BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 32172870)

  • 21. Semi-IPN ionogel based on poly (ionic liquids)/xanthan gum for highly sensitive pressure sensor.
    Wu Y; Ren Y; Liang Y; Li Y
    Int J Biol Macromol; 2022 Dec; 223(Pt A):327-334. PubMed ID: 36343835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-Responsive Semi-Interpenetrated Polymer Networks of pHEMA/PAA for the Capture of Copper Ions and Corrosion Removal.
    Guaragnone T; Rossi M; Chelazzi D; Mastrangelo R; Severi M; Fratini E; Baglioni P
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7471-7485. PubMed ID: 35089689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cadmium adsorption on aluminum oxide in the presence of polyacrylic acid.
    Floroiu RM; Davis AP; Torrents A
    Environ Sci Technol; 2001 Jan; 35(2):348-53. PubMed ID: 11347608
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Swelling behavior and morphological properties of semi-IPN hydrogels based on ionic and non-ionic components.
    Pulat M; Ozgündüz Hİ
    Biomed Mater Eng; 2014; 24(4):1725-33. PubMed ID: 24948456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimuli-responsive chitosan/poly (N-isopropylacrylamide) semi-interpenetrating polymer networks: effect of pH and temperature on their rheological and swelling properties.
    Fernández-Gutiérrez M; Fusco S; Mayol L; San Román J; Borzacchiello A; Ambrosio L
    J Mater Sci Mater Med; 2016 Jun; 27(6):109. PubMed ID: 27138966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new guar gum-based adsorbent for the removal of Hg(II) from its aqueous solutions.
    Thakur S; Kumari S; Dogra P; Chauhan GS
    Carbohydr Polym; 2014 Jun; 106():276-82. PubMed ID: 24721079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic viscosity of binary gum mixtures with xanthan gum and guar gum: Effect of NaCl, sucrose, and pH.
    Bak JH; Yoo B
    Int J Biol Macromol; 2018 May; 111():77-81. PubMed ID: 29289667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer.
    Mandal B; Ray SK
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():132-43. PubMed ID: 25280689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective removal of cationic dyes using response surface methodology optimized gum acacia-sodium alginate blended superadsorbent.
    Sharma AK; Priya ; Kaith BS; Sharma N; Bhatia JK; Tanwar V; Panchal S; Bajaj S
    Int J Biol Macromol; 2019 Mar; 124():331-345. PubMed ID: 30481534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane.
    Iwasaki Y; Aiba Y; Morimoto N; Nakabayashi N; Ishihara K
    J Biomed Mater Res; 2000 Dec; 52(4):701-8. PubMed ID: 11033553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.
    Peng F; Guan Y; Zhang B; Bian J; Ren JL; Yao CL; Sun RC
    Int J Biol Macromol; 2014 Apr; 65():564-72. PubMed ID: 24530334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitosan-g-poly(acrylic acid) hydrogel with crosslinked polymeric networks for Ni2+ recovery.
    Zheng Y; Huang D; Wang A
    Anal Chim Acta; 2011 Feb; 687(2):193-200. PubMed ID: 21277422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of temperature-sensitive Xanthan/NIPA hydrogel using citric acid as crosslinking agent for bisphenol A adsorption.
    Chen X; Li P; Kang Y; Zeng X; Xie Y; Zhang Y; Wang Y; Xie T
    Carbohydr Polym; 2019 Feb; 206():94-101. PubMed ID: 30553396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel pH-sensitive IPNs of polyacrylamide-g-gum ghatti and sodium alginate for gastro-protective drug delivery.
    Boppana R; Krishna Mohan G; Nayak U; Mutalik S; Sa B; Kulkarni RV
    Int J Biol Macromol; 2015 Apr; 75():133-43. PubMed ID: 25623023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface modification of poly(vinyl alcohol) sponge by acrylic acid to immobilize Prussian blue for selective adsorption of aqueous cesium.
    Wi H; Kim H; Oh D; Bae S; Hwang Y
    Chemosphere; 2019 Jul; 226():173-182. PubMed ID: 30927669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable Synthesis of Monolayer Poly(acrylic acid) on the Channel Surface of Mesoporous Alumina for Pb(II) Adsorption.
    Wang YP; Zhou P; Luo SZ; Liao XP; Wang B; Shao Q; Guo X; Guo Z
    Langmuir; 2018 Jul; 34(26):7859-7868. PubMed ID: 29863877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization.
    Koul V; Mohamed R; Kuckling D; Adler HJ; Choudhary V
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):204-13. PubMed ID: 21185698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution.
    Makhado E; Pandey S; Nomngongo PN; Ramontja J
    Carbohydr Polym; 2017 Nov; 176():315-326. PubMed ID: 28927614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution.
    Ghorai S; Sinhamahpatra A; Sarkar A; Panda AB; Pal S
    Bioresour Technol; 2012 Sep; 119():181-90. PubMed ID: 22728199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and rheological properties of xanthan gum/lysozyme system induced by in situ acidification.
    Xu W; Li Z; Jin W; Li P; Li Y; Liang H; Li Y; Li B
    Food Res Int; 2016 Dec; 90():85-90. PubMed ID: 29195895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.