These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32173159)

  • 1. An in-vitro study of temperature rise during rotary ultrasonic bone drilling of human bone.
    Singh RP; Pandey PM; Mridha AR
    Med Eng Phys; 2020 May; 79():33-43. PubMed ID: 32173159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling.
    Gupta V; Pandey PM
    Med Eng Phys; 2016 Nov; 38(11):1330-1338. PubMed ID: 27639655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques.
    Gupta V; Singh RP; Pandey PM; Gupta R
    Proc Inst Mech Eng H; 2020 Apr; 234(4):398-411. PubMed ID: 32026750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigations and statistical modeling of cutting force and torque in rotary ultrasonic bone drilling of human cadaver bone.
    Singh RP; Pandey PM; Mridha AR; Joshi T
    Proc Inst Mech Eng H; 2020 Feb; 234(2):148-162. PubMed ID: 31749398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones.
    Singh RP; Pandey PM; Behera C; Mridha AR
    Proc Inst Mech Eng H; 2020 Aug; 234(8):829-842. PubMed ID: 32490719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal changes during drilling in human femur by rotary ultrasonic bone drilling machine: A histologic and ultrastructural study.
    Singh RP; Pandey PM; Mir MA; Mridha AR
    J Biomed Mater Res B Appl Biomater; 2022 May; 110(5):1023-1033. PubMed ID: 34854533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.
    Gupta V; Pandey PM; Gupta RK; Mridha AR
    Proc Inst Mech Eng H; 2017 Mar; 231(3):189-196. PubMed ID: 28116985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Drilling Techniques on Microcracks and Pull-Out Strength of Cortical Screw Fixed in Human Tibia: An In-Vitro Study.
    Singh RP; Gupta V; Pandey PM; Mridha AR
    Ann Biomed Eng; 2021 Jan; 49(1):382-393. PubMed ID: 32661750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling and optimization of temperature in orthopaedic drilling: an in vitro study.
    Pandey RK; Panda SS
    Acta Bioeng Biomech; 2014; 16(1):107-16. PubMed ID: 24707883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of temperature elevation in rotary ultrasonic bone drilling using machine learning models: An in-vitro experimental study.
    Agarwal R; Singh J; Gupta V
    Med Eng Phys; 2022 Dec; 110():103869. PubMed ID: 35963828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study of temperature rise during bone drilling process.
    Sui J; Wang C; Sugita N
    Med Eng Phys; 2020 Apr; 78():64-73. PubMed ID: 32044224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of drilling parameters for thermal bone necrosis prevention.
    Akhbar MFA; Yusoff AR
    Technol Health Care; 2018; 26(4):621-635. PubMed ID: 29966212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotary ultrasonic bone drilling: Improved pullout strength and reduced damage.
    Gupta V; Pandey PM; Silberschmidt VV
    Med Eng Phys; 2017 Mar; 41():1-8. PubMed ID: 27913176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining.
    Singh G; Jain V; Gupta D
    Proc Inst Mech Eng H; 2015 Mar; 229(3):225-31. PubMed ID: 25833998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of thermal aspects of high-speed drilling of bone by theoretical and experimental approaches.
    Shakouri E; Ghorbani Nezhad M; Ghorbani P; Khosravi-Nejad F
    Phys Eng Sci Med; 2020 Sep; 43(3):959-972. PubMed ID: 32632571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill.
    Augustin G; Davila S; Udilljak T; Staroveski T; Brezak D; Babic S
    Int Orthop; 2012 Jul; 36(7):1449-56. PubMed ID: 22290154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric effect of vibrational drilling on osteonecrosis and comparative histopathology study with conventional drilling of cortical bone.
    Singh G; Jain V; Gupta D; Sharma A
    Proc Inst Mech Eng H; 2018 Oct; 232(10):975-986. PubMed ID: 30112958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of the temperature elevation in bone drilling using conventional and vibration-assisted methods.
    Bai X; Hou S; Li K; Qu Y; Zhang T
    Med Eng Phys; 2019 Jul; 69():1-7. PubMed ID: 31229386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal osteonecrosis and bone drilling parameters revisited.
    Augustin G; Davila S; Mihoci K; Udiljak T; Vedrina DS; Antabak A
    Arch Orthop Trauma Surg; 2008 Jan; 128(1):71-7. PubMed ID: 17762937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.
    Chen YC; Hsiao CK; Ciou JS; Tsai YJ; Tu YK
    Med Eng Phys; 2016 Nov; 38(11):1314-1321. PubMed ID: 27645310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.