These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32173667)

  • 1. A Multifaceted Evaluation on the Penetration Resistance of Protective Clothing Fabrics against Viral Liquid Drops without Pressure.
    Shimasaki N; Okaue A; Morimoto M; Uchida Y; Koshiba T; Tsunoda K; Arakawa S; Shinohara K
    Biocontrol Sci; 2020; 25(1):9-16. PubMed ID: 32173667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Sensitive Assay Using Synthetic Blood Containing Test Microbes for Evaluation of the Penetration Resistance of Protective Clothing Material under Applied Pressure.
    Shimasaki N; Hara M; Kikuno R; Shinohara K
    Biocontrol Sci; 2016; 21(3):141-52. PubMed ID: 27667519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the Filter Efficiency of Medical Nonwoven Fabrics against Three Different Microbe Aerosols.
    Shimasaki N; Okaue A; Kikuno R; Shinohara K
    Biocontrol Sci; 2018; 23(2):61-69. PubMed ID: 29910210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach to measure the resistance of fabric to liquid and viral penetration.
    Li M; Furlong JL; Yorio PL; Portnoff L
    PLoS One; 2019; 14(2):e0211827. PubMed ID: 30735524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of materials used for biological personal protective equipment against blood splash penetration.
    Shimasaki N; Shinohara K; Morikawa H
    Ind Health; 2017 Dec; 55(6):521-528. PubMed ID: 28978815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship of selected fabric characteristics and the barrier effectiveness of surgical gown fabrics.
    Leonas KK; Jinkins RS
    Am J Infect Control; 1997 Feb; 25(1):16-23. PubMed ID: 9057939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering performances of 20 protective fabrics against solid aerosols.
    Wingert L; Cloutier Y; Hallé S; Bahloul A; Tessier D; Giraudel JL; Dolez P; Tuduri L
    J Occup Environ Hyg; 2019 Aug; 16(8):592-606. PubMed ID: 31283417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing antiviral surgical gown using nonwoven fabrics for health care sector.
    Parthasarathi V; Thilagavathi G
    Afr Health Sci; 2013 Jun; 13(2):327-32. PubMed ID: 24235931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical model of pesticide penetration through woven work clothing fabrics.
    Lee S; Obendorf SK
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):266-73. PubMed ID: 16059749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evaluation of the protective performance of a positive pressure bio-protective clothing against viral aerosol].
    Li N; Wen ZB; Yang WH; Wang J; Li JS; Hu LF; Dong XK; Liu KY; Cao J
    Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Jan; 46(1):67-9. PubMed ID: 22490144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evaluation of fabrics in relation to their use as protective garments in nursing and surgery. III. Wet penetration and contact transfer of particles through clothing.
    Mackintosh CA; Lidwell OM
    J Hyg (Lond); 1980 Dec; 85(3):393-403. PubMed ID: 7462591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new penetration test method: protection efficiency of glove and clothing materials against diphenylmethane diisocyanate (MDI).
    Henriks-Eckerman ML; Mäkelä E
    Ann Occup Hyg; 2015 Mar; 59(2):221-31. PubMed ID: 25324563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential Risk of Virus Carryover by Fabrics of Personal Protective Gowns.
    Katoh I; Tanabe F; Kasai H; Moriishi K; Shimasaki N; Shinohara K; Uchida Y; Koshiba T; Arakawa S; Morimoto M
    Front Public Health; 2019; 7():121. PubMed ID: 31179258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pesticide personal protective clothing.
    Branson DH; Sweeney M
    Rev Environ Contam Toxicol; 1991; 122():81-109. PubMed ID: 1771275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a high-density nonwoven structure to improve the stab resistance of protective clothing material.
    Bao L; Wang Y; Baba T; Fukuda Y; Wakatsuki K; Morikawa H
    Ind Health; 2017 Dec; 55(6):513-520. PubMed ID: 28978816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a passive method for determining particle penetration through protective clothing materials.
    Jaques PA; Portnoff L
    J Occup Environ Hyg; 2017 Dec; 14(12):995-1002. PubMed ID: 28699827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the knife penetration resistance of single and double-layer metal reinforced fabrics.
    Amirshirzad F; Ezazshahabi N; Mousazadegan F
    Forensic Sci Int; 2021 Jan; 318():110629. PubMed ID: 33278698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of five chemical protective clothing materials against nano and submicron aerosols when submitted to mechanical deformations.
    Ben Salah M; Hallé S; Tuduri L
    J Occup Environ Hyg; 2016; 13(6):425-33. PubMed ID: 26786065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Personal Protective Clothing for Reducing Exposure to Insecticides in Pesticide Applicators.
    Naksata M; Watcharapasorn A; Hongsibsong S; Sapbamrer R
    Int J Environ Res Public Health; 2020 May; 17(9):. PubMed ID: 32397471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance of Type 5 chemical protective clothing against nanometric airborne particles: Behavior of seams and zipper.
    Vinches L; Hallé S
    J Occup Environ Hyg; 2017 Dec; 14(12):939-946. PubMed ID: 28825871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.