BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32173913)

  • 1. Soft, Implantable Bioelectronic Interfaces for Translational Research.
    Schiavone G; Fallegger F; Kang X; Barra B; Vachicouras N; Roussinova E; Furfaro I; Jiguet S; Seáñez I; Borgognon S; Rowald A; Li Q; Qin C; Bézard E; Bloch J; Courtine G; Capogrosso M; Lacour SP
    Adv Mater; 2020 Apr; 32(17):e1906512. PubMed ID: 32173913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces.
    Minev IR; Musienko P; Hirsch A; Barraud Q; Wenger N; Moraud EM; Gandar J; Capogrosso M; Milekovic T; Asboth L; Torres RF; Vachicouras N; Liu Q; Pavlova N; Duis S; Larmagnac A; Vörös J; Micera S; Suo Z; Courtine G; Lacour SP
    Science; 2015 Jan; 347(6218):159-63. PubMed ID: 25574019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A translational framework for peripheral nerve stimulating electrodes: Reviewing the journey from concept to clinic.
    Charkhkar H; Christie BP; Pinault GJ; Tyler DJ; Triolo RJ
    J Neurosci Methods; 2019 Dec; 328():108414. PubMed ID: 31472187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces.
    Afanasenkau D; Kalinina D; Lyakhovetskii V; Tondera C; Gorsky O; Moosavi S; Pavlova N; Merkulyeva N; Kalueff AV; Minev IR; Musienko P
    Nat Biomed Eng; 2020 Oct; 4(10):1010-1022. PubMed ID: 32958898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation.
    Schiavone G; Kang X; Fallegger F; Gandar J; Courtine G; Lacour SP
    Neuron; 2020 Oct; 108(2):238-258. PubMed ID: 33120021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Dura Mater Meddling in the Central Nervous System.
    Bloch J; Lacour SP; Courtine G
    JAMA Neurol; 2017 Apr; 74(4):470-475. PubMed ID: 28241158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes.
    Wurth S; Capogrosso M; Raspopovic S; Gandar J; Federici G; Kinany N; Cutrone A; Piersigilli A; Pavlova N; Guiet R; Taverni G; Rigosa J; Shkorbatova P; Navarro X; Barraud Q; Courtine G; Micera S
    Biomaterials; 2017 Apr; 122():114-129. PubMed ID: 28110171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials for flexible bioelectronic systems as chronic neural interfaces.
    Song E; Li J; Won SM; Bai W; Rogers JA
    Nat Mater; 2020 Jun; 19(6):590-603. PubMed ID: 32461684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridging the gap - biomimetic design of bioelectronic interfaces.
    Prominski A; Tian B
    Curr Opin Biotechnol; 2021 Dec; 72():69-75. PubMed ID: 34717124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces.
    Li S; Bai H; Shepherd RF; Zhao H
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11182-11204. PubMed ID: 30707785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term functionality of a soft electrode array for epidural spinal cord stimulation in a minipig model.
    Schiavone G; Wagner F; Fallegger F; Kang X; Vachicouras N; Barra B; Capogrosso M; Bloch J; Courtine G; Lacour SP
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1432-1435. PubMed ID: 30440661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges.
    Jiang L; Woodington B; Carnicer-Lombarte A; Malliaras G; Barone DG
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord.
    Capogrosso M; Gandar J; Greiner N; Moraud EM; Wenger N; Shkorbatova P; Musienko P; Minev I; Lacour S; Courtine G
    J Neural Eng; 2018 Apr; 15(2):026024. PubMed ID: 29339580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces.
    Fallegger F; Schiavone G; Lacour SP
    Adv Mater; 2020 Apr; 32(15):e1903904. PubMed ID: 31608508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wafer-scale fabrication of penetrating neural microelectrode arrays.
    Bhandari R; Negi S; Solzbacher F
    Biomed Microdevices; 2010 Oct; 12(5):797-807. PubMed ID: 20480240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfabricated bioelectrodes on self-expandable NiTi thin film devices for implants and diagnostic instruments.
    Chluba C; Siemsen K; Bechtold C; Zamponi C; Selhuber-Unkel C; Quandt E; Lima de Miranda R
    Biosens Bioelectron; 2020 Apr; 153():112034. PubMed ID: 31989946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugated Polymers in Bioelectronics: Addressing the Interface Challenge.
    Fidanovski K; Mawad D
    Adv Healthc Mater; 2019 May; 8(10):e1900053. PubMed ID: 30941922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation.
    Lee JH; Kim H; Kim JH; Lee SH
    Lab Chip; 2016 Mar; 16(6):959-76. PubMed ID: 26891410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon microfabrication technologies for biology integrated advance devices and interfaces.
    Juska VB; Maxwell G; Estrela P; Pemble ME; O'Riordan A
    Biosens Bioelectron; 2023 Oct; 237():115503. PubMed ID: 37481868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.