These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 32174143)
1. Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition. Polichnowski AJ; Griffin KA; Licea-Vargas H; Lan R; Picken MM; Long J; Williamson GA; Rosenberger C; Mathia S; Venkatachalam MA; Bidani AK Am J Physiol Renal Physiol; 2020 May; 318(5):F1086-F1099. PubMed ID: 32174143 [TBL] [Abstract][Full Text] [Related]
2. Distant effects of unilateral renal ischemia/reperfusion on contralateral kidney but not lung in rats: the roles of ROS and iNOS. Fatemikia H; Ketabchi F; Karimi Z; Moosavi SM Can J Physiol Pharmacol; 2016 May; 94(5):477-87. PubMed ID: 26854976 [TBL] [Abstract][Full Text] [Related]
3. New mouse model of chronic kidney disease transitioned from ischemic acute kidney injury. Wei J; Zhang J; Wang L; Jiang S; Fu L; Buggs J; Liu R Am J Physiol Renal Physiol; 2019 Aug; 317(2):F286-F295. PubMed ID: 31116604 [TBL] [Abstract][Full Text] [Related]
4. Endoplasmic reticulum stress is activated in post-ischemic kidneys to promote chronic kidney disease. Shu S; Zhu J; Liu Z; Tang C; Cai J; Dong Z EBioMedicine; 2018 Nov; 37():269-280. PubMed ID: 30314894 [TBL] [Abstract][Full Text] [Related]
5. Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis. Greite R; Thorenz A; Chen R; Jang MS; Rong S; Brownstein MJ; Tewes S; Wang L; Baniassad B; Kirsch T; Bräsen JH; Lichtinghagen R; Meier M; Haller H; Hueper K; Gueler F Am J Physiol Renal Physiol; 2018 May; 314(5):F881-F892. PubMed ID: 29357437 [TBL] [Abstract][Full Text] [Related]
6. Impaired hemodynamic renal reserve response following recovery from established acute kidney injury and improvement by hydrodynamic isotonic fluid delivery. Ullah MM; Collett JA; Bacallao RL; Basile DP Am J Physiol Renal Physiol; 2024 Jan; 326(1):F86-F94. PubMed ID: 37881874 [TBL] [Abstract][Full Text] [Related]
7. Progression of Chronic Kidney Disease After Acute Kidney Injury: Role of Self-Perpetuating Versus Hemodynamic-Induced Fibrosis. Picken M; Long J; Williamson GA; Polichnowski AJ Hypertension; 2016 Oct; 68(4):921-8. PubMed ID: 27550923 [TBL] [Abstract][Full Text] [Related]
8. Anti-anemia drug FG4592 retards the AKI-to-CKD transition by improving vascular regeneration and antioxidative capability. Wu M; Chen W; Miao M; Jin Q; Zhang S; Bai M; Fan J; Zhang Y; Zhang A; Jia Z; Huang S Clin Sci (Lond); 2021 Jul; 135(14):1707-1726. PubMed ID: 34255035 [TBL] [Abstract][Full Text] [Related]
9. Renal ischemia/reperfusion against nephrectomy for induction of acute lung injury in rats. Karimi Z; Ketabchi F; Alebrahimdehkordi N; Fatemikia H; Owji SM; Moosavi SM Ren Fail; 2016 Oct; 38(9):1503-1515. PubMed ID: 27484785 [TBL] [Abstract][Full Text] [Related]
10. Absence of renal hypoxia in the subacute phase of severe renal ischemia-reperfusion injury. Ow CPC; Ngo JP; Ullah MM; Barsha G; Meex RC; Watt MJ; Hilliard LM; Koeners MP; Evans RG Am J Physiol Renal Physiol; 2018 Nov; 315(5):F1358-F1369. PubMed ID: 30110566 [TBL] [Abstract][Full Text] [Related]
11. Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats. Wang Z; Zhu Q; Li PL; Dhaduk R; Zhang F; Gehr TW; Li N Am J Physiol Renal Physiol; 2014 May; 306(10):F1236-42. PubMed ID: 24623146 [TBL] [Abstract][Full Text] [Related]
12. Persistent oxidative stress following renal ischemia-reperfusion injury increases ANG II hemodynamic and fibrotic activity. Basile DP; Leonard EC; Beal AG; Schleuter D; Friedrich J Am J Physiol Renal Physiol; 2012 Jun; 302(11):F1494-502. PubMed ID: 22442209 [TBL] [Abstract][Full Text] [Related]
13. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice. Le Clef N; Verhulst A; D'Haese PC; Vervaet BA PLoS One; 2016; 11(3):e0152153. PubMed ID: 27007127 [TBL] [Abstract][Full Text] [Related]
14. [Effect of Cordyceps sinensis on the expression of HIF-1α and NGAL in rats with renal ischemia-reperfusion injury]. Yu H; Zhou Q; Huang R; Yuan M; Ao X; Yang J Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2012 Jan; 37(1):57-66. PubMed ID: 22349381 [TBL] [Abstract][Full Text] [Related]
17. Caspase-3 Is a Pivotal Regulator of Microvascular Rarefaction and Renal Fibrosis after Ischemia-Reperfusion Injury. Yang B; Lan S; Dieudé M; Sabo-Vatasescu JP; Karakeussian-Rimbaud A; Turgeon J; Qi S; Gunaratnam L; Patey N; Hébert MJ J Am Soc Nephrol; 2018 Jul; 29(7):1900-1916. PubMed ID: 29925521 [No Abstract] [Full Text] [Related]
18. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis. Menshikh A; Scarfe L; Delgado R; Finney C; Zhu Y; Yang H; de Caestecker MP Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1383-F1397. PubMed ID: 31509009 [TBL] [Abstract][Full Text] [Related]
19. Effects of Post Ischemia-Reperfusion Treatment with Trimetazidine on Renal Injury in Rats: Insights on Delayed Renal Fibrosis Progression. Park JH; Jun JH; Shim JK; Shin EJ; Shin E; Kwak YL Oxid Med Cell Longev; 2018; 2018():1072805. PubMed ID: 30057668 [TBL] [Abstract][Full Text] [Related]
20. FIH-1-modulated HIF-1α C-TAD promotes acute kidney injury to chronic kidney disease progression via regulating KLF5 signaling. Li ZL; Wang B; Lv LL; Tang TT; Wen Y; Cao JY; Zhu XX; Feng ST; Crowley SD; Liu BC Acta Pharmacol Sin; 2021 Dec; 42(12):2106-2119. PubMed ID: 33658705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]