These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32174331)

  • 1. A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control.
    Liu Y; Liu Y; Tang J; Yin E; Hu D; Zhou Z
    Comput Biol Med; 2020 Mar; 118():103618. PubMed ID: 32174331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 6. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards increasing the number of commands in a hybrid brain-computer interface with combination of gaze and motor imagery.
    Meena YK; Cecotti H; KongFatt Wong-Lin ; Prasad G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():506-9. PubMed ID: 26736310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BCI controlled robotic arm as assistance to the rehabilitation of neurologically disabled patients.
    Casey A; Azhar H; Grzes M; Sakel M
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):525-537. PubMed ID: 31711336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain Computer Interfaces in Rehabilitation Medicine.
    Bockbrader MA; Francisco G; Lee R; Olson J; Solinsky R; Boninger ML
    PM R; 2018 Sep; 10(9 Suppl 2):S233-S243. PubMed ID: 30269808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing training performance for brain-computer interface with object-directed 3D visual guidance.
    Liang S; Choi KS; Qin J; Pang WM; Heng PA
    Int J Comput Assist Radiol Surg; 2016 Nov; 11(11):2129-2137. PubMed ID: 26724935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface.
    Singh A; Hussain AA; Lal S; Guesgen HW
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.
    Ahn M; Cho H; Ahn S; Jun SC
    Front Hum Neurosci; 2018; 12():59. PubMed ID: 29497370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A BCI-based Environmental Control System for Patients with Severe Spinal Cord Injuries.
    Zhang R; Wang Q; Li K; He S; Qin S; Feng Z; Chen Y; Song P; Yang T; Zhang Y; Yu Z; Hu Y; Shao M; Li Y
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1959-1971. PubMed ID: 28092509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plug&Play Brain-Computer Interfaces for effective Active and Assisted Living control.
    Mora N; De Munari I; Ciampolini P; Del R Millán J
    Med Biol Eng Comput; 2017 Aug; 55(8):1339-1352. PubMed ID: 27858227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P300-Based Asynchronous Brain Computer Interface for Environmental Control System.
    Aydin EA; Bay OF; Guler I
    IEEE J Biomed Health Inform; 2018 May; 22(3):653-663. PubMed ID: 28391211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between covert sound-production task (sound-imagery) vs. motor-imagery for onset detection in real-life online self-paced BCIs.
    Song Y; Sepulveda F
    J Neuroeng Rehabil; 2020 Feb; 17(1):14. PubMed ID: 32028964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke.
    Ang KK; Chua KS; Phua KS; Wang C; Chin ZY; Kuah CW; Low W; Guan C
    Clin EEG Neurosci; 2015 Oct; 46(4):310-20. PubMed ID: 24756025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.