BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32174366)

  • 1. Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior.
    Katić K; Li R; Zeiler W
    Appl Ergon; 2020 May; 85():103078. PubMed ID: 32174366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat Flux Sensing for Machine-Learning-Based Personal Thermal Comfort Modeling.
    Jung W; Jazizadeh F; Diller TE
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing thermal comfort prediction in high-speed trains through machine learning and physiological signals integration.
    Zhou W; Yang M; Yu X; Peng Y; Fan C; Xu D; Xiao Q
    J Therm Biol; 2024 Apr; 121():103828. PubMed ID: 38604115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human thermal sensation and comfort in a non-uniform environment with personalized heating.
    Deng Q; Wang R; Li Y; Miao Y; Zhao J
    Sci Total Environ; 2017 Feb; 578():242-248. PubMed ID: 27265737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Establishment Method of a Personalized Thermal Comfort Prediction Model
    Wu J; Shan C; Hu J; Sun J; Zhang A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3383-3386. PubMed ID: 31946606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort.
    Zhou X; Ouyang Q; Zhu Y; Feng C; Zhang X
    Indoor Air; 2014 Apr; 24(2):171-7. PubMed ID: 23980928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal sensation prediction model for high-speed train occupants based on skin temperatures and skin wettedness.
    Zhou W; Yang M; Peng Y; Xiao Q; Fan C; Xu D
    Int J Biometeorol; 2024 Feb; 68(2):289-304. PubMed ID: 38047941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches.
    Salamone F; Bellazzi A; Belussi L; Damato G; Danza L; Dell'Aquila F; Ghellere M; Megale V; Meroni I; Vitaletti W
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and features for the prediction of thermal sensation and comfort using data from field surveys in Cyprus.
    Pantavou K; Delibasis KK; Nikolopoulos GK
    Int J Biometeorol; 2022 Oct; 66(10):1973-1984. PubMed ID: 35895145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal sensation prediction by soft computing methodology.
    Jović S; Arsić N; Vilimonović J; Petković D
    J Therm Biol; 2016 Dec; 62(Pt B):106-108. PubMed ID: 27888922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Physiological-Signal-Based Thermal Sensation Model for Indoor Environment Thermal Comfort Evaluation.
    Pao SL; Wu SY; Liang JM; Huang IJ; Guo LY; Wu WL; Liu YG; Nian SH
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Personal comfort models based on a 6-month experiment using environmental parameters and data from wearables.
    Tartarini F; Schiavon S; Quintana M; Miller C
    Indoor Air; 2022 Nov; 32(11):e13160. PubMed ID: 36437680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The key local segments of human body for personalized heating and cooling.
    Wang L; Tian Y; Kim J; Yin H
    J Therm Biol; 2019 Apr; 81():118-127. PubMed ID: 30975408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Psychological adaptation to thermal environments and its effects on thermal sensation.
    Zhuang L; Huang J; Li F; Zhong K
    Physiol Behav; 2022 Apr; 247():113724. PubMed ID: 35081370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overall thermal sensation and comfort prediction with different model combinations: Cold and hot step-change environments in winter.
    Hu S; Ma H; He M; Wang F; Zhao Y; Li Y
    J Therm Biol; 2023 Apr; 113():103458. PubMed ID: 37055100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.
    Schellen L; Loomans MG; de Wit MH; Olesen BW; van Marken Lichtenbelt WD
    Physiol Behav; 2012 Sep; 107(2):252-61. PubMed ID: 22877870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Chinese thermal comfort dataset.
    Yang L; Zhao S; Zhai Y; Gao S; Wang F; Lian Z; Duanmu L; Zhang Y; Zhou X; Cao B; Wang Z; Yan H; Zhang H; Arens E; de Dear R
    Sci Data; 2023 Sep; 10(1):662. PubMed ID: 37770487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human thermal physiological and psychological responses under different heating environments.
    Wang Z; Ning H; Ji Y; Hou J; He Y
    J Therm Biol; 2015 Aug; 52():177-86. PubMed ID: 26267512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gender and age differences in the passengers' thermal comfort during cooling and heating conditions in vehicles.
    Kwak J; Chun C; Park JS; Kim S; Seo S
    PLoS One; 2023; 18(11):e0294027. PubMed ID: 37948470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling occupants' personal characteristics for thermal comfort prediction.
    Haldi F; Robinson D
    Int J Biometeorol; 2011 Sep; 55(5):681-94. PubMed ID: 21347586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.