BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32174378)

  • 1. Grid therapy vs. conventional radiotherapy - 18 MV treatments: Photoneutron contamination along the maze of a linac bunker.
    Karimi AH; Vega-Carrillo HR
    Appl Radiat Isot; 2020 Apr; 158():109064. PubMed ID: 32174378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How much should you worry about contaminant neutrons in spatially fractionated grid radiation therapy?
    Mahmoudi F; Mohammadi N; Haghighi M; Alirezaei Z; Jabbari I; Chegeni N; Elmtalab S; Vega-Carrillo HR; Kazemian A; Geraily G; Karimi AH
    PLoS One; 2023; 18(1):e0280433. PubMed ID: 36638131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of 18-MV grid therapy from radiation protection aspects: unwanted dose and fatal cancer risk caused by photoneutrons and scattered photons.
    Karimi AH; Mirian SF; Mahmoudi F; Geraily G; Vega-Carrillo HR; Mohiuddin M
    Comput Methods Programs Biomed; 2022 Jan; 213():106524. PubMed ID: 34818621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room.
    Khosravi M; Shahbazi-Gahrouei D; Jabbari K; Nasri-Nasrabadi M; Baradaran-Ghahfarokhi M; Siavashpour Z; Gheisari R; Amiri B
    Radiat Prot Dosimetry; 2013 Sep; 156(3):356-63. PubMed ID: 23538892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient neutron dose equivalent outside concrete vault rooms for 15 and 18 MV radiotherapy accelerators.
    Martínez-Ovalle SA; Barquero R; Gómez-Ros JM; Lallena AM
    Radiat Prot Dosimetry; 2012 Mar; 148(4):457-64. PubMed ID: 21750004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does concrete composition affect photoneutron production inside radiation therapy bunkers?
    Mesbahi A; Azarpeyvand AA; Khosravi HR
    Jpn J Radiol; 2012 Feb; 30(2):162-6. PubMed ID: 22180187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of automatic wedge filter on photoneutron and photon spectra of an 18-MV photon beam.
    Ghavami SM; Mesbahi A; Mohammadi E
    Radiat Prot Dosimetry; 2010 Feb; 138(2):123-8. PubMed ID: 19789200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the linac neutron dose profile for various depths and field sizes: a Monte Carlo study.
    Prasada DNY; Ciamaudi N; Fadli M; Tursinah R; Pawiro SA
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34619664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoneutron Dose Estimation in GRID Therapy Using an Anthropomorphic Phantom: A Monte Carlo Study.
    Chegeni N; Karimi AH; Jabbari I; Arvandi S
    J Med Signals Sens; 2018; 8(3):175-183. PubMed ID: 30181966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoneutron and capture gamma dose equivalent for different room and maze layouts in radiation therapy.
    Mesbahi A; Ghiasi H; Mahdavi SR
    Radiat Prot Dosimetry; 2010 Aug; 140(3):242-9. PubMed ID: 20083490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of the photoneutron field in linac radiotherapy treatments with different collimation systems.
    Zanini A; Durisi E; Fasolo F; Ongaro C; Visca L; Nastasi U; Burn KW; Scielzo G; Adler JO; Annand JR; Rosner G
    Phys Med Biol; 2004 Feb; 49(4):571-82. PubMed ID: 15005166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of the photoneutron contamination present in a high-energy radiotherapy treatment room.
    Garnica-Garza HM
    Phys Med Biol; 2005 Feb; 50(3):531-9. PubMed ID: 15773728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the neutron radiation field and air activation around a medical electron linac.
    Horst F; Fehrenbacher G; Zink K
    Radiat Prot Dosimetry; 2017 Apr; 174(2):147-158. PubMed ID: 27170731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron spectra in a tissue equivalent phantom during photon radiotherapy treatment by LINACS.
    Zanini A; Durisi E; Fasolo F; Visca L; Ongaro C; Nastasi U; Burn KW; Annand JR
    Radiat Prot Dosimetry; 2004; 110(1-4):157-60. PubMed ID: 15353639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo estimation of photoneutrons contamination from high-energy X-ray medical accelerators in treatment room and maze: a simplified model.
    Zabihzadeh M; Ay MR; Allahverdi M; Mesbahi A; Mahdavi SR; Shahriari M
    Radiat Prot Dosimetry; 2009 Jul; 135(1):21-32. PubMed ID: 19483207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of photoneutron spectra produced in medical accelerators.
    Ongaro C; Zanini A; Nastasi U; Ródenas J; Ottaviano G; Manfredotti C; Burn KW
    Phys Med Biol; 2000 Dec; 45(12):L55-61. PubMed ID: 11131205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of the flattening filter on photoneutron production at 10 MV in the Varian TrueBeam linear accelerator.
    Montgomery L; Evans M; Liang L; Maglieri R; Kildea J
    Med Phys; 2018 Oct; 45(10):4711-4719. PubMed ID: 30141186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of neutron dose equivalent by photoneutron production inside the primary barriers of a radiotherapy vault.
    Choi CH; Park SY; Park JM; Chun M; Kim JI
    Phys Med; 2018 Apr; 48():1-5. PubMed ID: 29728220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential considerations for accurate evaluation of photoneutron contamination in Radiotherapy.
    Karimi AH; Brkić H; Shahbazi-Gahrouei D; Haghighi SB; Jabbari I
    Appl Radiat Isot; 2019 Mar; 145():24-31. PubMed ID: 30572262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system.
    Becker J; Brunckhorst E; Schmidt R
    Phys Med Biol; 2007 Nov; 52(21):6375-87. PubMed ID: 17951849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.