These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32174821)

  • 1. Online Natural Myocontrol of Combined Hand and Wrist Actions Using Tactile Myography and the Biomechanics of Grasping.
    Connan M; Kõiva R; Castellini C
    Front Neurorobot; 2020; 14():11. PubMed ID: 32174821
    [No Abstract]   [Full Text] [Related]  

  • 2. Action interference in simultaneous and proportional myocontrol: comparing force- and electromyography.
    Nowak M; Eiband T; Ramírez ER; Castellini C
    J Neural Eng; 2020 Mar; 17(2):026011. PubMed ID: 32109906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regressing grasping using force myography: an exploratory study.
    Sadeghi Chegani R; Menon C
    Biomed Eng Online; 2018 Oct; 17(1):159. PubMed ID: 30352593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-modal myocontrol: Testing combined force- and electromyography.
    Nowak M; Eiband T; Castellini C
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1364-1368. PubMed ID: 28814010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counting Grasping Action Using Force Myography: An Exploratory Study With Healthy Individuals.
    Xiao ZG; Menon C
    JMIR Rehabil Assist Technol; 2017 May; 4(1):e5. PubMed ID: 28582263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements.
    Sadarangani GP; Menon C
    Biomed Eng Online; 2017 May; 16(1):59. PubMed ID: 28511661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment.
    Sadarangani GP; Jiang X; Simpson LA; Eng JJ; Menon C
    Front Bioeng Biotechnol; 2017; 5():42. PubMed ID: 28798912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proportional control scheme for high density force myography.
    Belyea AT; Englehart KB; Scheme EJ
    J Neural Eng; 2018 Aug; 15(4):046029. PubMed ID: 29845972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous and Proportional Real-Time Myocontrol of Up to Three Degrees of Freedom of the Wrist and Hand.
    Nowak M; Vujaklija I; Sturma A; Castellini C; Farina D
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):459-469. PubMed ID: 35881594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrist-worn wearables based on force myography: on the significance of user anthropometry.
    Delva ML; Lajoie K; Khoshnam M; Menon C
    Biomed Eng Online; 2020 Jun; 19(1):46. PubMed ID: 32532358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density force myography: A possible alternative for upper-limb prosthetic control.
    Radmand A; Scheme E; Englehart K
    J Rehabil Res Dev; 2016; 53(4):443-56. PubMed ID: 27532260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does force myography recorded at the wrist correlate to resistance load levels during bicep curls?
    Xiao ZG; Menon C
    J Biomech; 2019 Jan; 83():310-314. PubMed ID: 30522877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous and proportional control of wrist and hand degrees of freedom with kinematic prediction models from high-density EMG.
    Hasbani MH; Barsakcioglu DY; Jung MK; Farina D
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():764-767. PubMed ID: 36085883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Way of Bionic Control Based on EI, EMG, and FMG Signals.
    Briko A; Kapravchuk V; Kobelev A; Hammoud A; Leonhardt S; Ngo C; Gulyaev Y; Shchukin S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Low-Density Force Myography Armband for Classification of Upper Limb Gestures.
    Rehman MU; Shah K; Haq IU; Iqbal S; Ismail MA; Selimefendigil F
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel PPG-FMG-ACC Wristband for Hand Gesture Recognition.
    Wang H; Kang P; Gao Q; Jiang S; Shull PB
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5097-5108. PubMed ID: 35881605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous assessment and training of an upper-limb amputee using incremental machine-learning-based myocontrol: a single-case experimental design.
    Nowak M; Bongers RM; van der Sluis CK; Albu-Schäffer A; Castellini C
    J Neuroeng Rehabil; 2023 Apr; 20(1):39. PubMed ID: 37029432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.
    Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Grasping of Moving Objects through Tactile Sensing.
    Lynch P; Cullinan MF; McGinn C
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.