These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32174963)

  • 1. DSPLMF: A Method for Cancer Drug Sensitivity Prediction Using a Novel Regularization Approach in Logistic Matrix Factorization.
    Emdadi A; Eslahchi C
    Front Genet; 2020; 11():75. PubMed ID: 32174963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix Factorization.
    Guan NN; Zhao Y; Wang CC; Li JQ; Chen X; Piao X
    Mol Ther Nucleic Acids; 2019 Sep; 17():164-174. PubMed ID: 31265947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Cancer Drug Response using a Recommender System.
    Suphavilai C; Bertrand D; Nagarajan N
    Bioinformatics; 2018 Nov; 34(22):3907-3914. PubMed ID: 29868820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug response prediction by inferring pathway-response associations with kernelized Bayesian matrix factorization.
    Ammad-Ud-Din M; Khan SA; Malani D; Murumägi A; Kallioniemi O; Aittokallio T; Kaski S
    Bioinformatics; 2016 Sep; 32(17):i455-i463. PubMed ID: 27587662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DBDNMF: A Dual Branch Deep Neural Matrix Factorization method for drug response prediction.
    Liu H; Wang F; Yu J; Pan Y; Gong C; Zhang L; Zhang L
    PLoS Comput Biol; 2024 Apr; 20(4):e1012012. PubMed ID: 38574114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Interpolation Weighted Collaborative Filtering Method for Anti-cancer Drug Response Prediction.
    Zhang L; Chen X; Guan NN; Liu H; Li JQ
    Front Pharmacol; 2018; 9():1017. PubMed ID: 30258362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization.
    Ren S; Tao Y; Yu K; Xue Y; Schwartz R; Lu X
    Pac Symp Biocomput; 2022; 27():278-289. PubMed ID: 34890156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel approach for drug response prediction in cancer cell lines via network representation learning.
    Yang J; Li A; Li Y; Guo X; Wang M
    Bioinformatics; 2019 May; 35(9):1527-1535. PubMed ID: 30304378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization.
    Ammad-ud-din M; Georgii E; Gönen M; Laitinen T; Kallioniemi O; Wennerberg K; Poso A; Kaski S
    J Chem Inf Model; 2014 Aug; 54(8):2347-59. PubMed ID: 25046554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meta-GDBP: a high-level stacked regression model to improve anticancer drug response prediction.
    Su R; Liu X; Xiao G; Wei L
    Brief Bioinform; 2020 May; 21(3):996-1005. PubMed ID: 30868164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting drug-disease associations by using similarity constrained matrix factorization.
    Zhang W; Yue X; Lin W; Wu W; Liu R; Huang F; Liu F
    BMC Bioinformatics; 2018 Jun; 19(1):233. PubMed ID: 29914348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction.
    Liu Y; Wu M; Miao C; Zhao P; Li XL
    PLoS Comput Biol; 2016 Feb; 12(2):e1004760. PubMed ID: 26872142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning and multi-omics approach to predict drug responses in cancer.
    Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC
    BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MDIPA: a microRNA-drug interaction prediction approach based on non-negative matrix factorization.
    Jamali AA; Kusalik A; Wu FX
    Bioinformatics; 2020 Dec; 36(20):5061-5067. PubMed ID: 33212495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Improved Anticancer Drug-Response Prediction Based on an Ensemble Method Integrating Matrix Completion and Ridge Regression.
    Liu C; Wei D; Xiang J; Ren F; Huang L; Lang J; Tian G; Li Y; Yang J
    Mol Ther Nucleic Acids; 2020 Sep; 21():676-686. PubMed ID: 32759058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.