These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 3217517)

  • 1. [The equivalent dose as a dosimetric criterion of acute radiation injury by radiations of various quality. Energy dependence of generalized coefficients of the quality of neutrons].
    Gozenbuk VL; Keirim-Markus IB
    Radiobiologiia; 1988; 28(6):812-6. PubMed ID: 3217517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The equivalent dose as a dosimetric criterion for acute radiation injury by radiations of various quality. The generalized equivalent dose].
    Gozenbuk VL; Keirim-Markus IB
    Radiobiologiia; 1988; 28(6):803-8. PubMed ID: 3217515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential absorbed dose distributions in lineal energy for neutrons and gamma rays at the mono-energetic neutron calibration facility.
    Takada M; Baba M; Yamaguchi H; Fujitaka K
    Radiat Prot Dosimetry; 2005; 114(4):481-90. PubMed ID: 15914511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Options for the modified radiation weighting factor of neutrons.
    Kellerer AM; Leuthold G; Mares V; Schraube H
    Radiat Prot Dosimetry; 2004; 109(3):181-8. PubMed ID: 15254321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of radiation quality average parameters in neutron-gamma radiation fields with the high-pressure ionization chamber: theory and practice.
    Makrigiorgos GM
    Radiat Res; 1989 Jun; 118(3):387-400. PubMed ID: 2727266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relative biological effectiveness of gamma-neutron irradiation with neutron energy of 0.9 MeV].
    Zherbin EA; Vershinina SF; Kadyrova NO; Rzhonsnitskaia LP; Tsybul'skiĭ VM
    Radiobiologiia; 1985; 25(2):271-3. PubMed ID: 4001332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential modulation of specific gene expression following high- and low-LET radiations.
    Woloschak GE; Chang-Liu CM
    Radiat Res; 1990 Nov; 124(2):183-7. PubMed ID: 2247598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron fluence-to-dose conversion coefficients for embryo and fetus.
    Chen J; Meyerhof D; Vlahovich S
    Radiat Prot Dosimetry; 2004; 110(1-4):693-8. PubMed ID: 15353732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lung cancer risk in mice: analysis of fractionation effects and neutron RBE with a biologically motivated model.
    Heidenreich WF; Carnes BA; Paretzke HG
    Radiat Res; 2006 Nov; 166(5):794-801. PubMed ID: 17067205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Dosimetric characteristics of a californium neutron source].
    Kraĭtor SN; Kuznetsova TV; Lunina NA; Popov VI; Ivanov VN
    Med Radiol (Mosk); 1983 Nov; 28(11):68-71. PubMed ID: 6645832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum.
    Takada M; Mihara E; Sasaki M; Nakamura T; Honma T; Kono K; Fujitaka K
    Radiat Prot Dosimetry; 2004; 110(1-4):601-6. PubMed ID: 15353715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations.
    Hunter N; Muirhead CR
    J Radiol Prot; 2009 Mar; 29(1):5-21. PubMed ID: 19225189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new neutron monitor and extended conversion coefficients for HP(10).
    d'Errico F; Giusti V; Siebert BR
    Radiat Prot Dosimetry; 2007; 125(1-4):345-8. PubMed ID: 17846028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of Harshaw neutron thermoluminescence dosemeters in terms of the revised ICRP/ICRU recommendations.
    Veinot KG; Hertel NE
    Radiat Prot Dosimetry; 2005; 113(4):442-8. PubMed ID: 15788417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction and disappearance of G2 chromatid breaks in lymphocytes after low doses of low-LET gamma-rays and high-LET fast neutrons.
    Vral A; Thierens H; Baeyens A; De Ridder L
    Int J Radiat Biol; 2002 Apr; 78(4):249-57. PubMed ID: 12020436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon and neutron dose contributions and mean quality factors phantoms of different size irradiated by monoenergetic neutrons.
    Dietze G; Siebert BR
    Radiat Res; 1994 Oct; 140(1):130-3. PubMed ID: 7938446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radionuclide neutron sources in calibration laboratory--neutron and gamma doses and their changes in time.
    Józefowicz K; Golnik N; Tulik P; Zielczynski M
    Radiat Prot Dosimetry; 2007; 126(1-4):134-7. PubMed ID: 17513855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of high LET facilities, existing and projected, with emphasis on the radiobiologic aspects.
    Hall EJ
    J Can Assoc Radiol; 1975 Mar; 26(1):3-14. PubMed ID: 806598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Neutron pollution in roentgen beams from electron accelerators].
    Fehrentz D; Hassib GM; Spyropoulos B
    Strahlentherapie; 1983 Nov; 159(11):703-12. PubMed ID: 6658859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methodologies for predicting the expected combined stochastic radiobiological effects of different ionizing radiations and some applications.
    Scott BR
    Radiat Res; 1984 Apr; 98(1):182-97. PubMed ID: 6718692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.