These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 32175507)
1. Fast, Accurate, and Reliable Protocols for Routine Calculations of Protein-Ligand Binding Affinities in Drug Design Projects Using AMBER GPU-TI with ff14SB/GAFF. He X; Liu S; Lee TS; Ji B; Man VH; York DM; Wang J ACS Omega; 2020 Mar; 5(9):4611-4619. PubMed ID: 32175507 [TBL] [Abstract][Full Text] [Related]
2. Blinded prediction of protein-ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4. Zou J; Tian C; Simmerling C J Comput Aided Mol Des; 2019 Dec; 33(12):1021-1029. PubMed ID: 31555923 [TBL] [Abstract][Full Text] [Related]
3. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package. Mermelstein DJ; Lin C; Nelson G; Kretsch R; McCammon JA; Walker RC J Comput Chem; 2018 Jul; 39(19):1354-1358. PubMed ID: 29532496 [TBL] [Abstract][Full Text] [Related]
4. Protein-Ligand Binding Free Energy Calculations with FEP. Wang L; Chambers J; Abel R Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905 [TBL] [Abstract][Full Text] [Related]
5. CHARMM-GUI Free Energy Calculator for Practical Ligand Binding Free Energy Simulations with AMBER. Zhang H; Kim S; Giese TJ; Lee TS; Lee J; York DM; Im W J Chem Inf Model; 2021 Sep; 61(9):4145-4151. PubMed ID: 34521199 [TBL] [Abstract][Full Text] [Related]
6. Using AMBER18 for Relative Free Energy Calculations. Song LF; Lee TS; Zhu C; York DM; Merz KM J Chem Inf Model; 2019 Jul; 59(7):3128-3135. PubMed ID: 31244091 [TBL] [Abstract][Full Text] [Related]
7. Large scale relative protein ligand binding affinities using non-equilibrium alchemy. Gapsys V; Pérez-Benito L; Aldeghi M; Seeliger D; van Vlijmen H; Tresadern G; de Groot BL Chem Sci; 2019 Dec; 11(4):1140-1152. PubMed ID: 34084371 [TBL] [Abstract][Full Text] [Related]
8. Advancing Drug Discovery through Enhanced Free Energy Calculations. Abel R; Wang L; Harder ED; Berne BJ; Friesner RA Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954 [TBL] [Abstract][Full Text] [Related]
9. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3. He X; Man VH; Ji B; Xie XQ; Wang J J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199 [TBL] [Abstract][Full Text] [Related]
10. The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP. Hu Y; Sherborne B; Lee TS; Case DA; York DM; Guo Z J Comput Aided Mol Des; 2016 Jul; 30(7):533-9. PubMed ID: 27480697 [TBL] [Abstract][Full Text] [Related]
11. Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors. Wang L; Deng Y; Knight JL; Wu Y; Kim B; Sherman W; Shelley JC; Lin T; Abel R J Chem Theory Comput; 2013 Feb; 9(2):1282-93. PubMed ID: 26588769 [TBL] [Abstract][Full Text] [Related]
12. Ligand Binding Affinity Prediction for Membrane Proteins with Alchemical Free Energy Calculation Methods. Zhang H; Im W J Chem Inf Model; 2024 Jul; 64(14):5671-5679. PubMed ID: 38959405 [TBL] [Abstract][Full Text] [Related]
13. QligFEP: an automated workflow for small molecule free energy calculations in Q. Jespers W; Esguerra M; Åqvist J; Gutiérrez-de-Terán H J Cheminform; 2019 Apr; 11(1):26. PubMed ID: 30941533 [TBL] [Abstract][Full Text] [Related]
14. Relative Binding Free Energy Calculations in Drug Discovery: Recent Advances and Practical Considerations. Cournia Z; Allen B; Sherman W J Chem Inf Model; 2017 Dec; 57(12):2911-2937. PubMed ID: 29243483 [TBL] [Abstract][Full Text] [Related]
15. Practical Guidance for Consensus Scoring and Force Field Selection in Protein-Ligand Binding Free Energy Simulations. Zhang H; Kim S; Im W J Chem Inf Model; 2022 Dec; 62(23):6084-6093. PubMed ID: 36399655 [TBL] [Abstract][Full Text] [Related]
16. FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols Using Active Learning. de Oliveira C; Leswing K; Feng S; Kanters R; Abel R; Bhat S J Chem Inf Model; 2023 Sep; 63(17):5592-5603. PubMed ID: 37594480 [TBL] [Abstract][Full Text] [Related]
17. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration. Lee TS; Hu Y; Sherborne B; Guo Z; York DM J Chem Theory Comput; 2017 Jul; 13(7):3077-3084. PubMed ID: 28618232 [TBL] [Abstract][Full Text] [Related]
18. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery. Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. Shivakumar D; Williams J; Wu Y; Damm W; Shelley J; Sherman W J Chem Theory Comput; 2010 May; 6(5):1509-19. PubMed ID: 26615687 [TBL] [Abstract][Full Text] [Related]
20. Towards predictive ligand design with free-energy based computational methods? Foloppe N; Hubbard R Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]