These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32175544)

  • 1. Auto-catalytic redox polymerisation using nanoceria and glucose oxidase for double network hydrogels.
    Mohammed AA; Pinna A; Li S; Sang T; Jones JR
    J Mater Chem B; 2020 Apr; 8(14):2834-2844. PubMed ID: 32175544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocomposite Hydrogels with Polymer Grafted Silica Nanoparticles, Using Glucose Oxidase.
    Mohammed AA; Li S; Sang T; Jones JR; Pinna A
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Fabrication of Nanoceria with Oxidase-like Activity at Neutral pH: Mechanism and Boosted Bio-Nanozyme Cascades.
    Zhang J; Wang J; Liao J; Lin Y; Zheng C; Liu J
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50236-50245. PubMed ID: 34636532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of three-dimensional hydrogel multilayers using enzyme-mediated redox chain initiation.
    Johnson LM; Deforest CA; Pendurti A; Anseth KS; Bowman CN
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1963-72. PubMed ID: 20586415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-based protein engineering grown ferrocene-containing redox polymers improve current generation in an enzymatic biofuel cell.
    Campbell AS; Murata H; Carmali S; Matyjaszewski K; Islam MF; Russell AJ
    Biosens Bioelectron; 2016 Dec; 86():446-453. PubMed ID: 27424262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinorganic nanocomposite hydrogels formed by HRP-GOx-cascade-catalyzed polymerization and exfoliation of the layered composites.
    Liao CA; Wu Q; Wei QC; Wang QG
    Chemistry; 2015 Sep; 21(36):12620-6. PubMed ID: 26230284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose.
    Wu X; Zhao B; Wu P; Zhang H; Cai C
    J Phys Chem B; 2009 Oct; 113(40):13365-73. PubMed ID: 19746958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture.
    Dawes CS; Konig H; Lin CC
    J Biotechnol; 2017 Apr; 248():25-34. PubMed ID: 28284922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamic Studies of the Complex Polyethylenimine and Glucose Oxidase.
    Szefler B; Diudea MV; Putz MV; Grudzinski IP
    Int J Mol Sci; 2016 Oct; 17(11):. PubMed ID: 27801788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making ATRP More Practical: Oxygen Tolerance.
    Szczepaniak G; Fu L; Jafari H; Kapil K; Matyjaszewski K
    Acc Chem Res; 2021 Apr; 54(7):1779-1790. PubMed ID: 33751886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-radical pathway dominated catalytic oxidation of As(III) with stoichiometric H
    Shan C; Liu Y; Huang Y; Pan B
    Environ Int; 2019 Mar; 124():393-399. PubMed ID: 30660851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatically Degassed Surface-Initiated Atom Transfer Radical Polymerization with Real-Time Monitoring.
    Navarro LA; Enciso AE; Matyjaszewski K; Zauscher S
    J Am Chem Soc; 2019 Feb; 141(7):3100-3109. PubMed ID: 30674187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity.
    Shah F; Yadav N; Singh S
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111478. PubMed ID: 33272726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity.
    Salimi A; Sharifi E; Noorbakhsh A; Soltanian S
    Biosens Bioelectron; 2007 Jun; 22(12):3146-53. PubMed ID: 17368016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer self-assembly of glucose oxidase and Os(Bpy)2CIPyCH2NH-poly(allylamine) bioelectrode.
    Calvo EJ; Etchenique R; Pietrasanta L; Wolosiuk A; Danilowicz C
    Anal Chem; 2001 Mar; 73(6):1161-8. PubMed ID: 11305646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of DNA on the oxidase activity of nanoceria with different morphologies.
    Yang D; Fa M; Gao L; Zhao R; Luo Y; Yao X
    Nanotechnology; 2018 Sep; 29(38):385101. PubMed ID: 29949520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose oxidase-copper hybrid nanoflowers embedded with magnetic nanoparticles as an effective antibacterial agent.
    Lee I; Cheon HJ; Adhikari MD; Tran TD; Yeon KM; Kim MI; Kim J
    Int J Biol Macromol; 2020 Jul; 155():1520-1531. PubMed ID: 31751699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of silica nanoparticles with different sizes on the catalytic activity of glucose oxidase.
    Sun Y; Yan F; Yang W; Zhao S; Yang W; Sun C
    Anal Bioanal Chem; 2007 Feb; 387(4):1565-72. PubMed ID: 17205271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic interactions in double-network hydrogels.
    Tominaga T; Tirumala VR; Lee S; Lin EK; Gong JP; Wu WL
    J Phys Chem B; 2008 Apr; 112(13):3903-9. PubMed ID: 18331022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer-by-layer assembly of ferrocene-modified linear polyethylenimine redox polymer films.
    DeLuca JL; Hickey DP; Bamper DA; Glatzhofer DT; Johnson MB; Schmidtke DW
    Chemphyschem; 2013 Jul; 14(10):2149-58. PubMed ID: 23712926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.