These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32175865)

  • 1. A Simple Video-Based Technique for Measuring Latency in Virtual Reality or Teleoperation.
    Feldstein IT; Ellis SR
    IEEE Trans Vis Comput Graph; 2021 Sep; 27(9):3611-3625. PubMed ID: 32175865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring motion-to-photon latency for sensorimotor experiments with virtual reality systems.
    Warburton M; Mon-Williams M; Mushtaq F; Morehead JR
    Behav Res Methods; 2023 Oct; 55(7):3658-3678. PubMed ID: 36217006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring latency in virtual environments.
    Friston S; Steed A
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):616-25. PubMed ID: 24650989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JanusVF: accurate navigation using SCAAT and virtual fiducials.
    Hutson M; Reiners D
    IEEE Trans Vis Comput Graph; 2011 Jan; 17(1):3-13. PubMed ID: 20548110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments.
    Sevinc V; Berkman MI
    Appl Ergon; 2020 Jan; 82():102958. PubMed ID: 31563798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion-Aware Interplay between WiGig and WiFi for Wireless Virtual Reality.
    Kim S; Yun JH
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33261082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Latency Rendering With Dataflow Architectures.
    Friston S; Foley J
    IEEE Comput Graph Appl; 2020; 40(3):94-104. PubMed ID: 32356731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ergonomics of virtual reality: human factors in developing clinical-oriented virtual environments.
    Riva G; Mantovani G
    Stud Health Technol Inform; 1999; 62():278-84. PubMed ID: 10538372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of apparent latency on simulator sickness while using a see-through helmet-mounted display: reducing apparent latency with predictive compensation.
    Buker TJ; Vincenzi DA; Deaton JE
    Hum Factors; 2012 Apr; 54(2):235-49. PubMed ID: 22624290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the temporal latency of a respiratory gating system using two distinct approaches.
    Stock MG; Chu C; Fontenot JD
    J Appl Clin Med Phys; 2022 Oct; 23(10):e13768. PubMed ID: 36082988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Visual Guides to Reduce Virtual Reality Sickness in First-Person Shooter Games: Correlation Analysis.
    Seok KH; Kim Y; Son W; Kim YS
    JMIR Serious Games; 2021 Jul; 9(3):e18020. PubMed ID: 34264196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of scattered radiation during intraoperative imaging in a virtual reality learning environment.
    Süncksen M; Bott OJ; Dresing K; Teistler M
    Int J Comput Assist Radiol Surg; 2020 Apr; 15(4):691-702. PubMed ID: 32130647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating Both Parallax and Latency Compensation into Video See-through Head-mounted Display.
    Ishihara A; Aga H; Ishihara Y; Ichikawa H; Kaji H; Kobayashi D; Kobayashi T; Nishida K; Hamasaki T; Mori H; Kawasaki K; Morikubo Y
    IEEE Trans Vis Comput Graph; 2023 Feb; PP():. PubMed ID: 37027581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Public Perceptions Regarding Use of Virtual Reality in Health Care: A Social Media Content Analysis Using Facebook.
    Keller MS; Park HJ; Cunningham ME; Fouladian JE; Chen M; Spiegel BMR
    J Med Internet Res; 2017 Dec; 19(12):e419. PubMed ID: 29258975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information retrieval interfaces in virtual reality-A scoping review focused on current generation technology.
    Schleußinger M
    PLoS One; 2021; 16(2):e0246398. PubMed ID: 33544731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a virtual reality arthroscopic knee simulator.
    Mabrey JD; Cannon WD; Gillogly SD; Kasser JR; Sweeney HJ; Zarins B; Mevis H; Garrett WE; Poss R
    Stud Health Technol Inform; 2000; 70():192-4. PubMed ID: 10977538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors Affecting Enjoyment of Virtual Reality Games: A Comparison Involving Consumer-Grade Virtual Reality Technology.
    Shafer DM; Carbonara CP; Korpi MF
    Games Health J; 2019 Feb; 8(1):15-23. PubMed ID: 30199273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.