These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32176273)

  • 1. Interpretable factor models of single-cell RNA-seq via variational autoencoders.
    Svensson V; Gayoso A; Yosef N; Pachter L
    Bioinformatics; 2020 Jun; 36(11):3418-3421. PubMed ID: 32176273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ACTIVA: realistic single-cell RNA-seq generation with automatic cell-type identification using introspective variational autoencoders.
    Heydari AA; Davalos OA; Zhao L; Hoyer KK; Sindi SS
    Bioinformatics; 2022 Apr; 38(8):2194-2201. PubMed ID: 35179571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions.
    Zhu K; Anastassiou D
    Bioinformatics; 2020 Jun; 36(11):3588-3589. PubMed ID: 32108864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Style transfer with variational autoencoders is a promising approach to RNA-Seq data harmonization and analysis.
    Russkikh N; Antonets D; Shtokalo D; Makarov A; Vyatkin Y; Zakharov A; Terentyev E
    Bioinformatics; 2020 Dec; 36(20):5076-5085. PubMed ID: 33026062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
    BinTayyash N; Georgaka S; John ST; Ahmed S; Boukouvalas A; Hensman J; Rattray M
    Bioinformatics; 2021 Nov; 37(21):3788-3795. PubMed ID: 34213536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scRMD: imputation for single cell RNA-seq data via robust matrix decomposition.
    Chen C; Wu C; Wu L; Wang X; Deng M; Xi R
    Bioinformatics; 2020 May; 36(10):3156-3161. PubMed ID: 32119079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scGate: marker-based purification of cell types from heterogeneous single-cell RNA-seq datasets.
    Andreatta M; Berenstein AJ; Carmona SJ
    Bioinformatics; 2022 Apr; 38(9):2642-2644. PubMed ID: 35258562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. V-SVA: an R Shiny application for detecting and annotating hidden sources of variation in single-cell RNA-seq data.
    Lawlor N; Marquez EJ; Lee D; Ucar D
    Bioinformatics; 2020 Jun; 36(11):3582-3584. PubMed ID: 32119082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scVAE: variational auto-encoders for single-cell gene expression data.
    Grønbech CH; Vording MF; Timshel PN; Sønderby CK; Pers TH; Winther O
    Bioinformatics; 2020 Aug; 36(16):4415-4422. PubMed ID: 32415966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CMF-Impute: an accurate imputation tool for single-cell RNA-seq data.
    Xu J; Cai L; Liao B; Zhu W; Yang J
    Bioinformatics; 2020 May; 36(10):3139-3147. PubMed ID: 32073612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EnImpute: imputing dropout events in single-cell RNA-sequencing data via ensemble learning.
    Zhang XF; Ou-Yang L; Yang S; Zhao XM; Hu X; Yan H
    Bioinformatics; 2019 Nov; 35(22):4827-4829. PubMed ID: 31125056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-negative Independent Factor Analysis disentangles discrete and continuous sources of variation in scRNA-seq data.
    Mao W; Pouyan MB; Kostka D; Chikina M
    Bioinformatics; 2022 May; 38(10):2749-2756. PubMed ID: 35561207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HDMC: a novel deep learning-based framework for removing batch effects in single-cell RNA-seq data.
    Wang X; Wang J; Zhang H; Huang S; Yin Y
    Bioinformatics; 2022 Feb; 38(5):1295-1303. PubMed ID: 34864918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scRNAss: a single-cell RNA-seq assembler via imputing dropouts and combing junctions.
    Liu J; Liu X; Ren X; Li G
    Bioinformatics; 2019 Nov; 35(21):4264-4271. PubMed ID: 30951147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.
    Andreatta M; Carmona SJ
    Bioinformatics; 2021 May; 37(6):882-884. PubMed ID: 32845323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks.
    Wang Y; Liu T; Zhao H
    Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data.
    Ye C; Speed TP; Salim A
    Bioinformatics; 2019 Dec; 35(24):5155-5162. PubMed ID: 31197307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.