These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 32176378)

  • 1. DNA-editing enzymes as potential treatments for heteroplasmic mtDNA diseases.
    Zekonyte U; Bacman SR; Moraes CT
    J Intern Med; 2020 Jun; 287(6):685-697. PubMed ID: 32176378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of mitochondrial genes and mtDNA heteroplasmy.
    Bacman SR; Gammage PA; Minczuk M; Moraes CT
    Methods Cell Biol; 2020; 155():441-487. PubMed ID: 32183972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches.
    Nissanka N; Moraes CT
    EMBO Rep; 2020 Mar; 21(3):e49612. PubMed ID: 32073748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic Manipulation of mtDNA Heteroplasmy: A Shifting Perspective.
    Jackson CB; Turnbull DM; Minczuk M; Gammage PA
    Trends Mol Med; 2020 Jul; 26(7):698-709. PubMed ID: 32589937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels.
    Pereira CV; Bacman SR; Arguello T; Zekonyte U; Williams SL; Edgell DR; Moraes CT
    EMBO Mol Med; 2018 Sep; 10(9):. PubMed ID: 30012581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a 'differential multiple cleavage-site' model.
    Bacman SR; Williams SL; Hernandez D; Moraes CT
    Gene Ther; 2007 Sep; 14(18):1309-18. PubMed ID: 17597792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo.
    Zekonyte U; Bacman SR; Smith J; Shoop W; Pereira CV; Tomberlin G; Stewart J; Jantz D; Moraes CT
    Nat Commun; 2021 May; 12(1):3210. PubMed ID: 34050192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring Single-Cell Mitochondrial DNA Copy Number and Heteroplasmy using Digital Droplet Polymerase Chain Reaction.
    Burr SP; Chinnery PF
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35913155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulating Mitochondrial DNA Heteroplasmy with Mitochondrially Targeted Endonucleases.
    Mikhailov N; Hämäläinen RH
    Ann Biomed Eng; 2024 Sep; 52(9):2627-2640. PubMed ID: 36001180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell individual full-length mtDNA sequencing by iMiGseq uncovers unexpected heteroplasmy shifts in mtDNA editing.
    Bi C; Wang L; Fan Y; Yuan B; Ramos-Mandujano G; Zhang Y; Alsolami S; Zhou X; Wang J; Shao Y; Reddy P; Zhang PY; Huang Y; Yu Y; Izpisua Belmonte JC; Li M
    Nucleic Acids Res; 2023 May; 51(8):e48. PubMed ID: 36999592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease.
    Bayona-Bafaluy MP; Blits B; Battersby BJ; Shoubridge EA; Moraes CT
    Proc Natl Acad Sci U S A; 2005 Oct; 102(40):14392-7. PubMed ID: 16179392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heteroplasmy Shifting as Therapy for Mitochondrial Disorders.
    Naeem MM; Sondheimer N
    Adv Exp Med Biol; 2019; 1158():257-267. PubMed ID: 31452145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.
    Loutre R; Heckel AM; Jeandard D; Tarassov I; Entelis N
    PLoS One; 2018; 13(6):e0199258. PubMed ID: 29912984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial DNA Heteroplasmy as an Informational Reservoir Dynamically Linked to Metabolic and Immunological Processes Associated with COVID-19 Neurological Disorders.
    Stefano GB; Kream RM
    Cell Mol Neurobiol; 2022 Jan; 42(1):99-107. PubMed ID: 34117968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome.
    Rai PK; Craven L; Hoogewijs K; Russell OM; Lightowlers RN
    Essays Biochem; 2018 Jul; 62(3):455-465. PubMed ID: 29950320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unusual mtDNA Control Region Length Heteroplasmy in the COS-7 Cell Line.
    Kozhukhar N; Mitta S; Alexeyev MF
    Genes (Basel); 2020 May; 11(6):. PubMed ID: 32486194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current strategies towards therapeutic manipulation of mtDNA heteroplasmy.
    Pereira CV; Moraes CT
    Front Biosci (Landmark Ed); 2017 Jan; 22(6):991-1010. PubMed ID: 27814659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights on mitochondrial heteroplasmy observed in ovarian diseases.
    Zhou Y; Jin Y; Wu T; Wang Y; Dong Y; Chen P; Hu C; Pan N; Ye C; Shen L; Lin M; Fang T; Wu R
    J Adv Res; 2024 Nov; 65():211-226. PubMed ID: 38061426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do?
    Moreira JD; Gopal DM; Kotton DN; Fetterman JL
    Genes (Basel); 2021 Oct; 12(11):. PubMed ID: 34828274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell analysis reveals context-dependent, cell-level selection of mtDNA.
    Kotrys AV; Durham TJ; Guo XA; Vantaku VR; Parangi S; Mootha VK
    Nature; 2024 May; 629(8011):458-466. PubMed ID: 38658765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.