BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32176683)

  • 1. A simplified modelling framework facilitates more complex representations of plant circadian clocks.
    Foo M; Bates DG; Akman OE
    PLoS Comput Biol; 2020 Mar; 16(3):e1007671. PubMed ID: 32176683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the complexity of mathematical models for the plant circadian clock by distributed delays.
    Tokuda IT; Akman OE; Locke JCW
    J Theor Biol; 2019 Feb; 463():155-166. PubMed ID: 30550861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana.
    Troncoso-Ponce MA; Mas P
    Mol Plant; 2012 May; 5(3):545-53. PubMed ID: 22230762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms underlying the Arabidopsis circadian clock.
    Nakamichi N
    Plant Cell Physiol; 2011 Oct; 52(10):1709-18. PubMed ID: 21873329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downstream of the plant circadian clock: output pathways for the control of physiology and development.
    Adams S; Carré IA
    Essays Biochem; 2011 Jun; 49(1):53-69. PubMed ID: 21819384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital clocks: simple Boolean models can quantitatively describe circadian systems.
    Akman OE; Watterson S; Parton A; Binns N; Millar AJ; Ghazal P
    J R Soc Interface; 2012 Sep; 9(74):2365-82. PubMed ID: 22499125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System.
    Foo M; Somers DE; Kim PJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004748. PubMed ID: 26828650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rethinking transcriptional activation in the Arabidopsis circadian clock.
    Fogelmark K; Troein C
    PLoS Comput Biol; 2014 Jul; 10(7):e1003705. PubMed ID: 25033214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri.
    Thommen Q; Pfeuty B; Morant PE; Corellou F; Bouget FY; Lefranc M
    PLoS Comput Biol; 2010 Nov; 6(11):e1000990. PubMed ID: 21085637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions.
    Shalit-Kaneh A; Kumimoto RW; Filkov V; Harmer SL
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):7147-7152. PubMed ID: 29915068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging design principles in the Arabidopsis circadian clock.
    Carré I; Veflingstad SR
    Semin Cell Dev Biol; 2013 May; 24(5):393-8. PubMed ID: 23597453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and simulating the Arabidopsis thaliana circadian clock using XPP-AUTO.
    Schmal C; Leloup JC; Gonze D
    Methods Mol Biol; 2014; 1158():337-58. PubMed ID: 24792063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana.
    Nomoto Y; Kubozono S; Yamashino T; Nakamichi N; Mizuno T
    Plant Cell Physiol; 2012 Nov; 53(11):1950-64. PubMed ID: 23037003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical inference of regulatory networks for circadian regulation.
    Aderhold A; Husmeier D; Grzegorczyk M
    Stat Appl Genet Mol Biol; 2014 Jun; 13(3):227-73. PubMed ID: 24864301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of regulatory flexibility under changing environmental conditions.
    Edwards KD; Akman OE; Knox K; Lumsden PJ; Thomson AW; Brown PE; Pokhilko A; Kozma-Bognar L; Nagy F; Rand DA; Millar AJ
    Mol Syst Biol; 2010 Nov; 6():424. PubMed ID: 21045818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of natural variation studies in the Arabidopsis thaliana circadian clock.
    Anwer MU; Davis SJ
    Semin Cell Dev Biol; 2013 May; 24(5):422-9. PubMed ID: 23558216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time to flower: interplay between photoperiod and the circadian clock.
    Johansson M; Staiger D
    J Exp Bot; 2015 Feb; 66(3):719-30. PubMed ID: 25371508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Old and New Roles and Evolving Complexities of Cardiovascular Clocks.
    Xu Y; Pi W; Rudic RD
    Yale J Biol Med; 2019 Jun; 92(2):283-290. PubMed ID: 31249489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Into the Evening: Complex Interactions in the Arabidopsis Circadian Clock.
    Huang H; Nusinow DA
    Trends Genet; 2016 Oct; 32(10):674-686. PubMed ID: 27594171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.