These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 32178748)
1. Time series analysis and forecasting of chlamydia trachomatis incidence using surveillance data from 2008 to 2019 in Shenzhen, China. Weng RX; Fu HL; Zhang CL; Ye JB; Hong FC; Chen XS; Cai YM Epidemiol Infect; 2020 Mar; 148():e76. PubMed ID: 32178748 [TBL] [Abstract][Full Text] [Related]
2. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
3. Time Series Models for Short Term Prediction of the Incidence of Japanese Encephalitis in Xianyang City, P R China Zhang RQ; Li FY; Liu JL; Liu MN; Luo WR; Ma T; Ma B; Zhang ZG Chin Med Sci J; 2017 Sep; 32(3):152-160. PubMed ID: 28956742 [TBL] [Abstract][Full Text] [Related]
4. Predicting Seasonal Influenza Based on SARIMA Model, in Mainland China from 2005 to 2018. Cong J; Ren M; Xie S; Wang P Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31783697 [TBL] [Abstract][Full Text] [Related]
5. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. Liu H; Li C; Shao Y; Zhang X; Zhai Z; Wang X; Qi X; Wang J; Hao Y; Wu Q; Jiao M J Infect Public Health; 2020 Feb; 13(2):287-294. PubMed ID: 31953020 [TBL] [Abstract][Full Text] [Related]
6. Time series analysis-based seasonal autoregressive fractionally integrated moving average to estimate hepatitis B and C epidemics in China. Wang YB; Qing SY; Liang ZY; Ma C; Bai YC; Xu CJ World J Gastroenterol; 2023 Nov; 29(42):5716-5727. PubMed ID: 38075851 [TBL] [Abstract][Full Text] [Related]
7. A hybrid model for short-term bacillary dysentery prediction in Yichang City, China. Yan W; Xu Y; Yang X; Zhou Y Jpn J Infect Dis; 2010 Jul; 63(4):264-70. PubMed ID: 20657066 [TBL] [Abstract][Full Text] [Related]
8. Forecasting the incidence of acute haemorrhagic conjunctivitis in Chongqing: a time series analysis. Qiu H; Zeng D; Yi J; Zhu H; Hu L; Jing D; Ye M Epidemiol Infect; 2020 Aug; 148():e193. PubMed ID: 32807257 [TBL] [Abstract][Full Text] [Related]
9. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. Mao Q; Zhang K; Yan W; Cheng C J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253 [TBL] [Abstract][Full Text] [Related]
10. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model. Zhang X; Pang Y; Cui M; Stallones L; Xiang H Ann Epidemiol; 2015 Feb; 25(2):101-6. PubMed ID: 25467006 [TBL] [Abstract][Full Text] [Related]
11. A hybrid seasonal prediction model for tuberculosis incidence in China. Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635 [TBL] [Abstract][Full Text] [Related]
12. Time-series modelling and forecasting of hand, foot and mouth disease cases in China from 2008 to 2018. Tian CW; Wang H; Luo XM Epidemiol Infect; 2019 Jan; 147():e82. PubMed ID: 30868999 [TBL] [Abstract][Full Text] [Related]
13. Forecasting the monthly incidence of scarlet fever in Chongqing, China using the SARIMA model. Wu WW; Li Q; Tian DC; Zhao H; Xia Y; Xiong Y; Su K; Tang WG; Chen X; Wang J; Qi L Epidemiol Infect; 2022 Apr; 150():e90. PubMed ID: 35543101 [TBL] [Abstract][Full Text] [Related]
14. A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China. Zhao D; Zhang R J Infect Dev Ctries; 2023 Nov; 17(11):1581-1590. PubMed ID: 38064398 [TBL] [Abstract][Full Text] [Related]
15. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036 [TBL] [Abstract][Full Text] [Related]
16. Predicting the incidence of rifampicin resistant tuberculosis in Yunnan, China: a seasonal time series analysis based on routine surveillance data. Yang YB; Liu LL; Chen JO; Li L; Qiu YB; Wu W; Xu L BMC Infect Dis; 2024 Aug; 24(1):835. PubMed ID: 39152374 [TBL] [Abstract][Full Text] [Related]
17. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan. Kuan MM PeerJ; 2022; 10():e13117. PubMed ID: 36164599 [TBL] [Abstract][Full Text] [Related]
18. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. Wang Y; Xu C; Wang Z; Zhang S; Zhu Y; Yuan J PLoS One; 2018; 13(12):e0208404. PubMed ID: 30586416 [TBL] [Abstract][Full Text] [Related]
19. Trend analysis and prediction of gonorrhea in mainland China based on a hybrid time series model. Wang Z; Wang Y; Zhang S; Wang S; Xu Z; Feng Z BMC Infect Dis; 2024 Jan; 24(1):113. PubMed ID: 38253998 [TBL] [Abstract][Full Text] [Related]
20. Forecasting the Incidence of Mumps in Zibo City Based on a SARIMA Model. Xu Q; Li R; Liu Y; Luo C; Xu A; Xue F; Xu Q; Li X Int J Environ Res Public Health; 2017 Aug; 14(8):. PubMed ID: 28817101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]