BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32179130)

  • 1. Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction.
    Maiti S; Mukherjee D; Roy P; Chakrabarti J; Bhattacharyya D
    Biochim Biophys Acta Gen Subj; 2020 Jul; 1864(7):129600. PubMed ID: 32179130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence dependent variations in RNA duplex are related to non-canonical hydrogen bond interactions in dinucleotide steps.
    Kailasam S; Bhattacharyya D; Bansal M
    BMC Res Notes; 2014 Feb; 7():83. PubMed ID: 24502340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacking interactions involving non-Watson-Crick basepairs: dispersion corrected density functional theory studies.
    Maiti S; Bhattacharyya D
    Phys Chem Chem Phys; 2017 Nov; 19(42):28718-28730. PubMed ID: 29043327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-sensitivity of isosteric substitutions of non-Watson-Crick basepairs in recurrent RNA 3D motifs.
    Khisamutdinov EF; Sweeney BA; Leontis NB
    Nucleic Acids Res; 2021 Sep; 49(16):9574-9593. PubMed ID: 34403481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and energy of non-canonical basepairs: comparison of various computational chemistry methods with crystallographic ensembles.
    Panigrahi S; Pal R; Bhattacharyya D
    J Biomol Struct Dyn; 2011 Dec; 29(3):541-56. PubMed ID: 22066539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural stability of tandemly occurring noncanonical basepairs within double helical fragments: molecular dynamics studies of functional RNA.
    Halder S; Bhattacharyya D
    J Phys Chem B; 2010 Nov; 114(44):14028-40. PubMed ID: 20945881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Does Mg
    Halder A; Roy R; Bhattacharyya D; Mitra A
    Biophys J; 2017 Jul; 113(2):277-289. PubMed ID: 28506525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure at 1.5 angstroms resolution of an RNA octamer duplex containing tandem G.U basepairs.
    Jang SB; Hung LW; Jeong MS; Holbrook EL; Chen X; Turner DH; Holbrook SR
    Biophys J; 2006 Jun; 90(12):4530-7. PubMed ID: 16581850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique tertiary and neighbor interactions determine conservation patterns of Cis Watson-Crick A/G base-pairs.
    Sponer J; Mokdad A; Sponer JE; Spacková N; Leszczynski J; Leontis NB
    J Mol Biol; 2003 Jul; 330(5):967-78. PubMed ID: 12860120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Watson-Crick base pairing in RNA. quantum chemical analysis of the cis Watson-Crick/sugar edge base pair family.
    Sponer JE; Spacková N; Kulhanek P; Leszczynski J; Sponer J
    J Phys Chem A; 2005 Mar; 109(10):2292-301. PubMed ID: 16838999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of RNA base pairing: structures and energies of the trans Watson-Crick/sugar edge base pairs.
    Sponer JE; Spackova N; Leszczynski J; Sponer J
    J Phys Chem B; 2005 Jun; 109(22):11399-410. PubMed ID: 16852393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules.
    Leontis NB; Stombaugh J; Westhof E
    Biochimie; 2002 Sep; 84(9):961-73. PubMed ID: 12458088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Modeling of Wobble to Watson-Crick-Like Guanine-Uracil Tautomerization Pathways in RNA.
    Chandorkar S; Raghunathan S; Jaganade T; Priyakumar UD
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there a special function for U.G basepairs in ribosomal RNA?
    van Knippenberg PH; Formenoy LJ; Heus HA
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):14-7. PubMed ID: 2207138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA structure and dynamics: a base pairing perspective.
    Halder S; Bhattacharyya D
    Prog Biophys Mol Biol; 2013 Nov; 113(2):264-83. PubMed ID: 23891726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs.
    Mondal M; Halder S; Chakrabarti J; Bhattacharyya D
    Biopolymers; 2016 Apr; 105(4):212-26. PubMed ID: 26600167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A QM/QTAIM detailed look at the Watson-Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs.
    Brovarets' OO; Voiteshenko IS; Pérez-Sánchez H; Hovorun DM
    J Biomol Struct Dyn; 2018 May; 36(7):1649-1665. PubMed ID: 28514900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.