BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32179223)

  • 1. Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model.
    Li SW; Li MY; Sun HJ; Li HB; Ma LQ
    Environ Pollut; 2020 Jul; 262():114253. PubMed ID: 32179223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions.
    Li J; Li K; Cave M; Li HB; Ma LQ
    J Hazard Mater; 2015 Sep; 295():55-62. PubMed ID: 25911623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. As, Cd, and Pb relative bioavailability in contaminated soils: Coupling mouse bioassay with UBM assay.
    Zhu X; Li MY; Chen XQ; Wang JY; Li LZ; Tu C; Luo YM; Li HB; Ma LQ
    Environ Int; 2019 Sep; 130():104875. PubMed ID: 31200159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil.
    Gonzaga MIS; Matias MIAS; Andrade KR; Jesus AN; Cunha GDC; Andrade RS; Santos JCJ
    Chemosphere; 2020 Feb; 240():124828. PubMed ID: 31568944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation and elemental association of Zn, Cd and Pb in soils contaminated by Zn minings using a continuous-flow sequential extraction.
    Buanuam J; Shiowatana J; Pongsakul P
    J Environ Monit; 2005 Aug; 7(8):778-84. PubMed ID: 16049578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the Speciation of Heavy Metals in the Contaminated Soil Incubated with Corn Cob-Derived Biochar and Apatite.
    Vuong TX; Stephen J; Nguyen TTT; Cao V; Pham DTN
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does freeze-thaw action affect the extractability and bioavailability of Pb and As in contaminated soils?
    Sun Y; Jones KC; Sun Z; Shen J; Ma F; Gu Q
    Sci Total Environ; 2023 Jan; 854():158453. PubMed ID: 36089034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food influence on lead relative bioavailability in contaminated soils: Mechanisms and health implications.
    Li HB; Li MY; Zhao D; Zhu YG; Li J; Juhasz AL; Cui XY; Luo J; Ma LQ
    J Hazard Mater; 2018 Sep; 358():427-433. PubMed ID: 30014932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccessible and non-bioaccessible fractions of soil arsenic.
    Whitacre SD; Basta NT; Dayton EA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):620-8. PubMed ID: 23442113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of phosphate amendment on relative bioavailability and bioaccessibility of lead and arsenic in contaminated soils.
    Li SW; Liu X; Sun HJ; Li MY; Zhao D; Luo J; Li HB; Ma LQ
    J Hazard Mater; 2017 Oct; 339():256-263. PubMed ID: 28654790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Fractionations of Lead and Zinc in the Contaminated Soil Amended with the Blended Biochar/Apatite.
    Vuong TX; Stephen J; Minh TB; Nguyen TTT; Duong TH; Pham DTN
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the relationship between lead speciation and bioaccessibility of mining impacted soils and dusts.
    Liu Y; Bello O; Rahman MM; Dong Z; Islam S; Naidu R
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):17056-17067. PubMed ID: 28580551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil.
    Wan D; Zhang N; Chen W; Cai P; Zheng L; Huang Q
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32130-32139. PubMed ID: 30218340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the SBRC Assay to Predict Lead Relative Bioavailability in Urban Soils: Contaminant Source and Correlation Model.
    Li HB; Zhao D; Li J; Li SW; Wang N; Juhasz AL; Zhu YG; Ma LQ
    Environ Sci Technol; 2016 May; 50(10):4989-96. PubMed ID: 27093348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling Pb bioaccessibility in soils contaminated by mining and smelting activities.
    Caboche J; Denys S; Feidt C; Delalain P; Tack K; Rychen G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Aug; 45(10):1264-74. PubMed ID: 20635294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ formation of pyromorphite is not required for the reduction of in vivo pb relative bioavailability in contaminated soils.
    Juhasz AL; Gancarz D; Herde C; McClure S; Scheckel KG; Smith E
    Environ Sci Technol; 2014 Jun; 48(12):7002-9. PubMed ID: 24823360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chemical Speciation, Influencing Factors, and Regression Model of Heavy Metals in Farmland of Typical Carbonate Area with High Geological Background, Southwest China].
    Tang RL; Xu JL; Liu B; Du XM; Gu X; Yu LS; Bi J
    Huan Jing Ke Xue; 2024 May; 45(5):2995-3004. PubMed ID: 38629560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead relative bioavailability in soils based on different endpoints of a mouse model.
    Li SW; Sun HJ; Wang G; Cui XY; Juhasz AL; Li HB; Ma LQ
    J Hazard Mater; 2017 Mar; 326():94-100. PubMed ID: 27992800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.