These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32179311)

  • 1. Decision tree-based diagnosis of coronary artery disease: CART model.
    Ghiasi MM; Zendehboudi S; Mohsenipour AA
    Comput Methods Programs Biomed; 2020 Aug; 192():105400. PubMed ID: 32179311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset.
    Velusamy D; Ramasamy K
    Comput Methods Programs Biomed; 2021 Jan; 198():105770. PubMed ID: 33027698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model.
    Joloudari JH; Joloudari EH; Saadatfar H; GhasemiGol M; Razavi SM; Mosavi A; Nabipour N; Shamshirband S; Nadai L
    Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 31979257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting coronary artery disease: a comparison between two data mining algorithms.
    Ayatollahi H; Gholamhosseini L; Salehi M
    BMC Public Health; 2019 Apr; 19(1):448. PubMed ID: 31035958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Model for Coronary Artery Disease Diagnosis: A Comparative Study of Several Machine Learning Algorithms.
    Garavand A; Salehnasab C; Behmanesh A; Aslani N; Zadeh AH; Ghaderzadeh M
    J Healthc Eng; 2022; 2022():5359540. PubMed ID: 36304749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A data mining approach for diagnosis of coronary artery disease.
    Alizadehsani R; Habibi J; Hosseini MJ; Mashayekhi H; Boghrati R; Ghandeharioun A; Bahadorian B; Sani ZA
    Comput Methods Programs Biomed; 2013 Jul; 111(1):52-61. PubMed ID: 23537611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting coronary artery disease using different artificial neural network models.
    Colak MC; Colak C; Kocatürk H; Sağiroğlu S; Barutçu I
    Anadolu Kardiyol Derg; 2008 Aug; 8(4):249-54. PubMed ID: 18676299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new machine learning technique for an accurate diagnosis of coronary artery disease.
    Abdar M; Książek W; Acharya UR; Tan RS; Makarenkov V; Pławiak P
    Comput Methods Programs Biomed; 2019 Oct; 179():104992. PubMed ID: 31443858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decision tree-based methodology to select a proper approach for wart treatment.
    Ghiasi MM; Zendehboudi S
    Comput Biol Med; 2019 May; 108():400-409. PubMed ID: 31077954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries.
    Alizadehsani R; Hosseini MJ; Khosravi A; Khozeimeh F; Roshanzamir M; Sarrafzadegan N; Nahavandi S
    Comput Methods Programs Biomed; 2018 Aug; 162():119-127. PubMed ID: 29903478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of different types of liver diseases using rule based classification model.
    Kumar Y; Sahoo G
    Technol Health Care; 2013; 21(5):417-32. PubMed ID: 23963359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving medical diagnosis reliability using Boosted C5.0 decision tree empowered by Particle Swarm Optimization.
    Pashaei E; Ozen M; Aydin N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():7230-3. PubMed ID: 26737960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the incidence of portosplenomesenteric vein thrombosis in patients with acute pancreatitis using classification and regression tree algorithm.
    Fei Y; Gao K; Hu J; Tu J; Li WQ; Wang W; Zong GQ
    J Crit Care; 2017 Jun; 39():124-130. PubMed ID: 28254727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia.
    Zhang Y; Ma Y
    Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of a deep learning algorithm for the evaluation of CAD-RADS classification with CCTA.
    Muscogiuri G; Chiesa M; Trotta M; Gatti M; Palmisano V; Dell'Aversana S; Baessato F; Cavaliere A; Cicala G; Loffreno A; Rizzon G; Guglielmo M; Baggiano A; Fusini L; Saba L; Andreini D; Pepi M; Rabbat MG; Guaricci AI; De Cecco CN; Colombo G; Pontone G
    Atherosclerosis; 2020 Feb; 294():25-32. PubMed ID: 31945615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of machine learning models based on decision trees in classifying the factors affecting mortality of COVID-19 patients in Hamadan, Iran.
    Moslehi S; Rabiei N; Soltanian AR; Mamani M
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):192. PubMed ID: 35871639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hybrid Data Mining Model to Predict Coronary Artery Disease Cases Using Non-Invasive Clinical Data.
    Verma L; Srivastava S; Negi PC
    J Med Syst; 2016 Jul; 40(7):178. PubMed ID: 27286983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building more accurate decision trees with the additive tree.
    Luna JM; Gennatas ED; Ungar LH; Eaton E; Diffenderfer ES; Jensen ST; Simone CB; Friedman JH; Solberg TD; Valdes G
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19887-19893. PubMed ID: 31527280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative analysis of multi-level computer-assisted decision making systems for traumatic injuries.
    Ji SY; Smith R; Huynh T; Najarian K
    BMC Med Inform Decis Mak; 2009 Jan; 9():2. PubMed ID: 19144188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary algorithms and decision trees for predicting poor outcome after endovascular treatment for acute ischemic stroke.
    Kappelhof N; Ramos LA; Kappelhof M; van Os HJA; Chalos V; van Kranendonk KR; Kruyt ND; Roos YBWEM; van Zwam WH; van der Schaaf IC; van Walderveen MAA; Wermer MJH; van Oostenbrugge RJ; Lingsma H; Dippel D; Majoie CBLM; Marquering HA
    Comput Biol Med; 2021 Jun; 133():104414. PubMed ID: 33962154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.