These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 32179391)
1. NeuroBayesSLAM: Neurobiologically inspired Bayesian integration of multisensory information for robot navigation. Zeng T; Tang F; Ji D; Si B Neural Netw; 2020 Jun; 126():21-35. PubMed ID: 32179391 [TBL] [Abstract][Full Text] [Related]
2. Video data for the cognitive mapping process of NeuroBayesSLAM system. Zeng T; Si B Data Brief; 2020 Jun; 30():105637. PubMed ID: 32420426 [TBL] [Abstract][Full Text] [Related]
3. NeuroSLAM: a brain-inspired SLAM system for 3D environments. Yu F; Shang J; Hu Y; Milford M Biol Cybern; 2019 Dec; 113(5-6):515-545. PubMed ID: 31571007 [TBL] [Abstract][Full Text] [Related]
4. Cognitive Mapping Based on Conjunctive Representations of Space and Movement. Zeng T; Si B Front Neurorobot; 2017; 11():61. PubMed ID: 29213234 [TBL] [Abstract][Full Text] [Related]
5. Decentralized Multisensory Information Integration in Neural Systems. Zhang WH; Chen A; Rasch MJ; Wu S J Neurosci; 2016 Jan; 36(2):532-47. PubMed ID: 26758843 [TBL] [Abstract][Full Text] [Related]
6. A hierarchical model of goal directed navigation selects trajectories in a visual environment. Erdem UM; Milford MJ; Hasselmo ME Neurobiol Learn Mem; 2015 Jan; 117():109-21. PubMed ID: 25079451 [TBL] [Abstract][Full Text] [Related]
7. Exploiting semantic information in a spiking neural SLAM system. Dumont NS; Furlong PM; Orchard J; Eliasmith C Front Neurosci; 2023; 17():1190515. PubMed ID: 37476829 [TBL] [Abstract][Full Text] [Related]
8. Sensory feedback in a bump attractor model of path integration. Poll DB; Nguyen K; Kilpatrick ZP J Comput Neurosci; 2016 Apr; 40(2):137-55. PubMed ID: 26754972 [TBL] [Abstract][Full Text] [Related]
9. Bayesian decision theory and navigation. McNamara TP; Chen X Psychon Bull Rev; 2022 Jun; 29(3):721-752. PubMed ID: 34820786 [TBL] [Abstract][Full Text] [Related]
15. A theoretical account of cue averaging in the rodent head direction system. Page HJ; Walters DM; Knight R; Piette CE; Jeffery KJ; Stringer SM Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20130283. PubMed ID: 24366143 [TBL] [Abstract][Full Text] [Related]
16. Dynamic reweighting of visual and vestibular cues during self-motion perception. Fetsch CR; Turner AH; DeAngelis GC; Angelaki DE J Neurosci; 2009 Dec; 29(49):15601-12. PubMed ID: 20007484 [TBL] [Abstract][Full Text] [Related]
17. Learning multisensory cue integration: A computational model of crossmodal synaptic plasticity enables reliability-based cue weighting by capturing stimulus statistics. Shaikh D Front Neural Circuits; 2022; 16():921453. PubMed ID: 36004009 [TBL] [Abstract][Full Text] [Related]
18. Multiple cue use and integration in pigeons (Columba livia). Legge EL; Madan CR; Spetch ML; Ludvig EA Anim Cogn; 2016 May; 19(3):581-91. PubMed ID: 26908004 [TBL] [Abstract][Full Text] [Related]
20. Learned integration of visual, vestibular, and motor cues in multiple brain regions computes head direction during visually guided navigation. Fortenberry B; Gorchetchnikov A; Grossberg S Hippocampus; 2012 Dec; 22(12):2219-37. PubMed ID: 22707350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]