These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 32179391)

  • 21. How cognitive aging affects multisensory integration of navigational cues.
    Bates SL; Wolbers T
    Neurobiol Aging; 2014 Dec; 35(12):2761-2769. PubMed ID: 24952995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vision and proprioception make equal contributions to path integration in a novel homing task.
    Chrastil ER; Nicora GL; Huang A
    Cognition; 2019 Nov; 192():103998. PubMed ID: 31228680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning Cognitive Map Representations for Navigation by Sensory-Motor Integration.
    Zhao D; Zhang Z; Lu H; Cheng S; Si B; Feng X
    IEEE Trans Cybern; 2022 Jan; 52(1):508-521. PubMed ID: 32275629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cognitive memory and mapping in a brain-like system for robotic navigation.
    Tang H; Huang W; Narayanamoorthy A; Yan R
    Neural Netw; 2017 Mar; 87():27-37. PubMed ID: 28064015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms.
    Arleo A; Rondi-Reig L
    J Integr Neurosci; 2007 Sep; 6(3):327-66. PubMed ID: 17933016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Path integration absent in scent-tracking fimbria-fornix rats: evidence for hippocampal involvement in "sense of direction" and "sense of distance" using self-movement cues.
    Whishaw IQ; Gorny B
    J Neurosci; 1999 Jun; 19(11):4662-73. PubMed ID: 10341264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation.
    Geva-Sagiv M; Las L; Yovel Y; Ulanovsky N
    Nat Rev Neurosci; 2015 Feb; 16(2):94-108. PubMed ID: 25601780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurocomputational approaches to modelling multisensory integration in the brain: a review.
    Ursino M; Cuppini C; Magosso E
    Neural Netw; 2014 Dec; 60():141-65. PubMed ID: 25218929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A decentralised neural model explaining optimal integration of navigational strategies in insects.
    Sun X; Yue S; Mangan M
    Elife; 2020 Jun; 9():. PubMed ID: 32589143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calibrating space: exploration is important for allothetic and idiothetic navigation.
    Whishaw IQ; Brooks BL
    Hippocampus; 1999; 9(6):659-67. PubMed ID: 10641759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Head direction cell activity monitored in a novel environment and during a cue conflict situation.
    Taube JS; Burton HL
    J Neurophysiol; 1995 Nov; 74(5):1953-71. PubMed ID: 8592189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation.
    Linderman SW; Johnson MJ; Wilson MA; Chen Z
    J Neurosci Methods; 2016 Apr; 263():36-47. PubMed ID: 26854398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A GPU-accelerated cortical neural network model for visually guided robot navigation.
    Beyeler M; Oros N; Dutt N; Krichmar JL
    Neural Netw; 2015 Dec; 72():75-87. PubMed ID: 26494281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration.
    Oess T; Löhr MPR; Schmid D; Ernst MO; Neumann H
    Front Neurorobot; 2020; 14():29. PubMed ID: 32499692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells.
    Knierim JJ; Kudrimoti HS; McNaughton BL
    J Neurophysiol; 1998 Jul; 80(1):425-46. PubMed ID: 9658061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bio-inspired homogeneous multi-scale place recognition.
    Chen Z; Lowry S; Jacobson A; Hasselmo ME; Milford M
    Neural Netw; 2015 Dec; 72():48-61. PubMed ID: 26576467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entorhinal-hippocampal interactions lead to globally coherent representations of space.
    Zeng T; Si B; Li X
    Curr Res Neurobiol; 2022; 3():100035. PubMed ID: 36685760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal cue combination and landmark-stability learning in the head direction system.
    Jeffery KJ; Page HJ; Stringer SM
    J Physiol; 2016 Nov; 594(22):6527-6534. PubMed ID: 27479741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multisensory integration: psychophysics, neurophysiology, and computation.
    Angelaki DE; Gu Y; DeAngelis GC
    Curr Opin Neurobiol; 2009 Aug; 19(4):452-8. PubMed ID: 19616425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models.
    Mulas M; Waniek N; Conradt J
    Front Comput Neurosci; 2016; 10():13. PubMed ID: 26924979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.