These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 32179391)

  • 41. Bio-inspired multi-scale fusion.
    Hausler S; Chen Z; Hasselmo ME; Milford M
    Biol Cybern; 2020 Apr; 114(2):209-229. PubMed ID: 32322978
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using an evolutionary algorithm to determine the parameters of a biologically inspired model of head direction cells.
    Kyriacou T
    J Comput Neurosci; 2012 Apr; 32(2):281-95. PubMed ID: 21785973
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Positioning Method Based on Place Cells and Head-Direction Cells for Inertial/Visual Brain-Inspired Navigation System.
    Chen Y; Xiong Z; Liu J; Yang C; Chao L; Peng Y
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883992
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A biologically inspired neural model for visual and proprioceptive integration including sensory training.
    Saidi M; Towhidkhah F; Gharibzadeh S; Lari AA
    J Integr Neurosci; 2013 Dec; 12(4):491-511. PubMed ID: 24372068
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel apparatus for assessing visual cue-based navigation in rodents.
    Lester AW; Kapellusch AJ; Barnes CA
    J Neurosci Methods; 2020 May; 338():108667. PubMed ID: 32169584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interindividual differences influence multisensory processing during spatial navigation.
    Zanchi S; Cuturi LF; Sandini G; Gori M
    J Exp Psychol Hum Percept Perform; 2022 Feb; 48(2):174-189. PubMed ID: 35225632
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acetylcholine contributes to the integration of self-movement cues in head direction cells.
    Yoder RM; Chan JHM; Taube JS
    Behav Neurosci; 2017 Aug; 131(4):312-24. PubMed ID: 28714717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling place cells and grid cells in multi-compartment environments: Entorhinal-hippocampal loop as a multisensory integration circuit.
    Li T; Arleo A; Sheynikhovich D
    Neural Netw; 2020 Jan; 121():37-51. PubMed ID: 31526953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-organizing continuous attractor network models of hippocampal spatial view cells.
    Stringer SM; Rolls ET; Trappenberg TP
    Neurobiol Learn Mem; 2005 Jan; 83(1):79-92. PubMed ID: 15607692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cognitive, Systems, and Computational Neurosciences of the Self in Motion.
    Noel JP; Angelaki DE
    Annu Rev Psychol; 2022 Jan; 73():103-129. PubMed ID: 34546803
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experience-Dependency of Reliance on Local Visual and Idiothetic Cues for Spatial Representations Created in the Absence of Distal Information.
    Draht F; Zhang S; Rayan A; Schönfeld F; Wiskott L; Manahan-Vaughan D
    Front Behav Neurosci; 2017; 11():92. PubMed ID: 28634444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bayesian inference in ring attractor networks.
    Kutschireiter A; Basnak MA; Wilson RI; Drugowitsch J
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2210622120. PubMed ID: 36812206
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellular Basis of Head Direction and Contextual Cues in the Insect Brain.
    Varga AG; Ritzmann RE
    Curr Biol; 2016 Jul; 26(14):1816-28. PubMed ID: 27397888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [A spatial localization model of mobile robot based on entorhinal-hippocampal cognitive mechanism in rat brain].
    Yu N; Liao Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):217-227. PubMed ID: 35523542
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vestibular control of entorhinal cortex activity in spatial navigation.
    Jacob PY; Poucet B; Liberge M; Save E; Sargolini F
    Front Integr Neurosci; 2014; 8():38. PubMed ID: 24926239
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimal combination of environmental cues and path integration during navigation.
    Sjolund LA; Kelly JW; McNamara TP
    Mem Cognit; 2018 Jan; 46(1):89-99. PubMed ID: 28828745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vector-based navigation using grid-like representations in artificial agents.
    Banino A; Barry C; Uria B; Blundell C; Lillicrap T; Mirowski P; Pritzel A; Chadwick MJ; Degris T; Modayil J; Wayne G; Soyer H; Viola F; Zhang B; Goroshin R; Rabinowitz N; Pascanu R; Beattie C; Petersen S; Sadik A; Gaffney S; King H; Kavukcuoglu K; Hassabis D; Hadsell R; Kumaran D
    Nature; 2018 May; 557(7705):429-433. PubMed ID: 29743670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Representation of Haltere Oscillations and Integration with Visual Inputs in the Fly Central Complex.
    Kathman ND; Fox JL
    J Neurosci; 2019 May; 39(21):4100-4112. PubMed ID: 30877172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Motor-maps, navigation and implicit space representation in the hippocampus.
    Kaske A; Winber G; Cöster J
    Biol Cybern; 2006 Jan; 94(1):46-57. PubMed ID: 16331489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial synchronization codes from coupled rate-phase neurons.
    Monaco JD; De Guzman RM; Blair HT; Zhang K
    PLoS Comput Biol; 2019 Jan; 15(1):e1006741. PubMed ID: 30682012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.