These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 32179418)

  • 1. Enhancement of hydrocarbons production through co-pyrolysis of acid-treated biomass and waste tire in a fixed bed reactor.
    Khan SR; Zeeshan M; Masood A
    Waste Manag; 2020 Apr; 106():21-31. PubMed ID: 32179418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres.
    Alvarez J; Amutio M; Lopez G; Santamaria L; Bilbao J; Olazar M
    Waste Manag; 2019 Feb; 85():385-395. PubMed ID: 30803593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect.
    Chen W; Chen Y; Yang H; Xia M; Li K; Chen X; Chen H
    Bioresour Technol; 2017 Dec; 245(Pt A):860-868. PubMed ID: 28926919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst.
    Duan D; Zhang Y; Lei H; Villota E; Ruan R
    Waste Manag; 2019 Apr; 88():1-9. PubMed ID: 31079620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality.
    Hopa DY; Alagöz O; Yılmaz N; Dilek M; Arabacı G; Mutlu T
    Waste Manag Res; 2019 Sep; 37(9):925-933. PubMed ID: 31319779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production.
    Zhang Y; Fan L; Liu S; Zhou N; Ding K; Peng P; Anderson E; Addy M; Cheng Y; Liu Y; Li B; Snyder J; Chen P; Ruan R
    Bioresour Technol; 2018 Jul; 259():461-464. PubMed ID: 29605465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing hydrocarbon production via ex-situ catalytic co-pyrolysis of biomass and high-density polyethylene: Study of synergistic effect and aromatics selectivity.
    He T; Zhong S; Liu C; Shujaa A; Zhang B
    Waste Manag; 2021 Jun; 128():189-199. PubMed ID: 33992999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature.
    Yazdani E; Hashemabadi SH; Taghizadeh A
    Waste Manag; 2019 Feb; 85():195-201. PubMed ID: 30803573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-pyrolysis of neem wood bark and low-density polyethylene: influence of plastic on pyrolysis product distribution and bio-oil characterization.
    Kaushik VS; Dhanalakshmi CS; Madhu P; Tamilselvam P
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):88213-88223. PubMed ID: 35831654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of torrefaction with Mg-based additives on the pyrolysis of cotton stalk.
    Zeng K; Yang Q; Zhang Y; Mei Y; Wang X; Yang H; Shao J; Li J; Chen H
    Bioresour Technol; 2018 Aug; 261():62-69. PubMed ID: 29653335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of the cotton stalk and high-ash coal on gas production during co-pyrolysis/gasification.
    Yang P; Zhao S; Zhang Q; Hu J; Liu R; Huang Z; Gao Y
    Bioresour Technol; 2021 Sep; 336():125336. PubMed ID: 34082337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-processing of olive bagasse with crude rapeseed oil via pyrolysis.
    Uçar S; Karagöz S
    Waste Manag Res; 2017 May; 35(5):480-490. PubMed ID: 28097923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)- and alkaline copper quaternary compounds (ACQ)-treated wood biomasses.
    Kim JY; Kim TS; Eom IY; Kang SM; Cho TS; Choi IG; Choi JW
    J Hazard Mater; 2012 Aug; 227-228():445-52. PubMed ID: 22698682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.
    Hu G; Li J; Zhang X; Li Y
    J Environ Manage; 2017 May; 192():234-242. PubMed ID: 28171835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic co-pyrolysis of microwave pretreated chili straw and polypropylene to produce hydrocarbons-rich bio-oil.
    Zhang X; Yu Z; Lu X; Ma X
    Bioresour Technol; 2021 Jan; 319():124191. PubMed ID: 33022438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of upgrading ability and limitations of slow co-pyrolysis: Case of olive mill wastewater sludge/waste tires slow co-pyrolysis.
    Grioui N; Halouani K; Agblevor FA
    Waste Manag; 2019 Jun; 92():75-88. PubMed ID: 31160029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam.
    Van Nguyen Q; Choi YS; Choi SK; Jeong YW; Kwon YS
    J Environ Manage; 2019 May; 237():24-29. PubMed ID: 30780052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
    Li N; Wang X; Bai X; Li Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1501-11. PubMed ID: 26964339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.