BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32179454)

  • 1. Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli.
    Feng J; Jiang M; Li K; Lu Q; Xu S; Wang X; Chen K; Ouyang P
    Bioelectrochemistry; 2020 Aug; 134():107498. PubMed ID: 32179454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of an Electron Transfer Mediator Pathway for Bioelectrosynthesis by
    Feng J; Lu Q; Li K; Xu S; Wang X; Chen K; Ouyang P
    Front Bioeng Biotechnol; 2020; 8():590667. PubMed ID: 33178679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying Cytochrome
    Su L; Fukushima T; Prior A; Baruch M; Zajdel TJ; Ajo-Franklin CM
    ACS Synth Biol; 2020 Jan; 9(1):115-124. PubMed ID: 31880923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production.
    Zhang J; Li F; Liu D; Liu Q; Song H
    Chem Soc Rev; 2024 Feb; 53(3):1375-1446. PubMed ID: 38117181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a pathway for electron uptake in Shewanella oneidensis.
    Rowe AR; Salimijazi F; Trutschel L; Sackett J; Adesina O; Anzai I; Kugelmass LH; Baym MH; Barstow B
    Commun Biol; 2021 Aug; 4(1):957. PubMed ID: 34381156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-dependent current generation and energy conservation by Shewanella oneidensis MR-1 in bioelectrochemical systems.
    Hirose A; Kouzuma A; Watanabe K
    J Biosci Bioeng; 2021 Jan; 131(1):27-32. PubMed ID: 32958393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur-Mediated Electron Shuttling Sustains Microbial Long-Distance Extracellular Electron Transfer with the Aid of Metallic Iron Sulfides.
    Kondo K; Okamoto A; Hashimoto K; Nakamura R
    Langmuir; 2015 Jul; 31(26):7427-34. PubMed ID: 26070345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retracted: The bidirectional extracellular electron transfer process aids iron cycling by
    Yadav S; Sadhotra C; Patil SA
    Appl Environ Microbiol; 2023 Sep; ():e0060923. PubMed ID: 37681980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH dehydrogenases drive inward electron transfer in Shewanella oneidensis MR-1.
    Tefft NM; Ford K; TerAvest MA
    Microb Biotechnol; 2023 Mar; 16(3):560-568. PubMed ID: 36420671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active N dopant states of electrodes regulate extracellular electron transfer of Shewanella oneidensis MR-1 for bioelectricity generation: Experimental and theoretical investigations.
    Wang YX; Li WQ; He CS; Zhao HQ; Han JC; Liu XC; Mu Y
    Biosens Bioelectron; 2020 Jul; 160():112231. PubMed ID: 32469730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems.
    Kouzuma A; Ishii S; Watanabe K
    Bioresour Technol; 2018 May; 255():302-307. PubMed ID: 29426790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
    Yang Y; Ding Y; Hu Y; Cao B; Rice SA; Kjelleberg S; Song H
    ACS Synth Biol; 2015 Jul; 4(7):815-23. PubMed ID: 25621739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soluble Iron Enhances Extracellular Electron Uptake by
    Abuyen K; El-Naggar MY
    ChemElectroChem; 2023 Feb; 10(4):. PubMed ID: 37649707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer.
    Yu L; Yuan Y; Rensing C; Zhou S
    Biosens Bioelectron; 2018 May; 106():21-28. PubMed ID: 29414084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems.
    Zhou S; Tang J; Yuan Y
    Bioelectrochemistry; 2015 Apr; 102():29-34. PubMed ID: 25483997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces.
    Wang R; Li H; Sun J; Zhang L; Jiao J; Wang Q; Liu S
    Adv Mater; 2021 Feb; 33(6):e2004051. PubMed ID: 33325567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens.
    Luo H; Qi J; Zhou M; Liu G; Lu Y; Zhang R; Zeng C
    Bioresour Technol; 2020 Aug; 309():123322. PubMed ID: 32305841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
    Conley BE; Intile PJ; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.