BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32179454)

  • 41. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.
    Zhou H; Liu B; Wang Q; Sun J; Xie G; Ren N; Ren ZJ; Xing D
    Biotechnol Biofuels; 2017; 10():238. PubMed ID: 29075322
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New applications and performance of bioelectrochemical systems.
    Hamelers HV; Ter Heijne A; Sleutels TH; Jeremiasse AW; Strik DP; Buisman CJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1673-85. PubMed ID: 20024546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Current Production by Exogenous Electron Mediators via Synergy of Promoting Biofilm Formation and the Electron Shuttling Process.
    Wu Y; Luo X; Qin B; Li F; Häggblom MM; Liu T
    Environ Sci Technol; 2020 Jun; 54(12):7217-7225. PubMed ID: 32352288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics.
    Wu Y; Liu T; Li X; Li F
    Environ Sci Technol; 2014 Aug; 48(16):9306-14. PubMed ID: 25058026
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pyruvate accelerates palladium reduction by regulating catabolism and electron transfer pathway in
    Cheng YY; Wang WJ; Ding ST; Zhang MX; Tang AG; Zhang L; Li DB; Li BB; Deng GZ; Wu C
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33514518
    [No Abstract]   [Full Text] [Related]  

  • 48. Facile One-Step Strategy for Highly Boosted Microbial Extracellular Electron Transfer of the Genus Shewanella.
    Wang Y; Lv M; Meng Q; Ding C; Jiang L; Liu H
    ACS Nano; 2016 Jun; 10(6):6331-7. PubMed ID: 27196945
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter.
    Ding M; Shiu HY; Li SL; Lee CK; Wang G; Wu H; Weiss NO; Young TD; Weiss PS; Wong GC; Nealson KH; Huang Y; Duan X
    ACS Nano; 2016 Nov; 10(11):9919-9926. PubMed ID: 27787972
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Overexpression of the adenylate cyclase gene cyaC facilitates current generation by Shewanella oneidensis in bioelectrochemical systems.
    Kasai T; Tomioka Y; Kouzuma A; Watanabe K
    Bioelectrochemistry; 2019 Oct; 129():100-105. PubMed ID: 31153124
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial electro-fermentation for synthesis of chemicals and biofuels driven by bi-directional extracellular electron transfer.
    Gong Z; Yu H; Zhang J; Li F; Song H
    Synth Syst Biotechnol; 2020 Dec; 5(4):304-313. PubMed ID: 32995586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells.
    Kouzuma A; Kasai T; Hirose A; Watanabe K
    Front Microbiol; 2015; 6():609. PubMed ID: 26136738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identifying the potential extracellular electron transfer pathways from a c-type cytochrome network.
    Ding DW; Xu J; Li L; Xie JM; Sun X
    Mol Biosyst; 2014 Dec; 10(12):3138-46. PubMed ID: 25227320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteomics Reveal the Effect of Exogenous Electrons on Electroactive
    Feng J; Feng J; Li C; Xu S; Wang X; Chen K
    Front Microbiol; 2022; 13():815366. PubMed ID: 35464959
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.
    TerAvest MA; Rosenbaum MA; Kotloski NJ; Gralnick JA; Angenent LT
    Biotechnol Bioeng; 2014 Apr; 111(4):692-9. PubMed ID: 24122485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Re-evaluation of Electron-Transfer Mechanisms in Microbial Electrochemistry:
    Oram J; Jeuken LJ
    ChemElectroChem; 2016 May; 3(5):829-835. PubMed ID: 27668145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species.
    Kato S
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28067820
    [No Abstract]   [Full Text] [Related]  

  • 58. Application of redox mediators in bioelectrochemical systems.
    Martinez CM; Alvarez LH
    Biotechnol Adv; 2018; 36(5):1412-1423. PubMed ID: 29857046
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.
    Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC
    Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer.
    Hsu L; Deng P; Zhang Y; Jiang X
    Nano Lett; 2018 Jul; 18(7):4606-4610. PubMed ID: 29923733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.