These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32179454)

  • 61. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanism and applications of bidirectional extracellular electron transfer of
    Zang Y; Cao B; Zhao H; Xie B; Ge Y; Liu H; Yi Y
    Environ Sci Process Impacts; 2023 Dec; 25(12):1863-1877. PubMed ID: 37787043
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced bidirectional extracellular electron transfer based on biointerface interaction of conjugated polymers-bacteria biohybrid system.
    Zhang P; Zhou X; Wang X; Li Z
    Colloids Surf B Biointerfaces; 2023 Aug; 228():113383. PubMed ID: 37295125
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network.
    Liu XW; Chen JJ; Huang YX; Sun XF; Sheng GP; Li DB; Xiong L; Zhang YY; Zhao F; Yu HQ
    Sci Rep; 2014 Jan; 4():3732. PubMed ID: 24429552
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO
    Wu Z; Wang J; Liu J; Wang Y; Bi C; Zhang X
    Microb Cell Fact; 2019 Jan; 18(1):15. PubMed ID: 30691454
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide.
    LaBelle EV; Marshall CW; May HD
    Acc Chem Res; 2020 Jan; 53(1):62-71. PubMed ID: 31809012
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway.
    Feng J; Qian Y; Wang Z; Wang X; Xu S; Chen K; Ouyang P
    J Biotechnol; 2018 Jun; 275():1-6. PubMed ID: 29581032
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An electrochemical system for the rapid and accurate quantitation of microbial exoelectrogenic ability.
    Wang H; Zheng Y; Liu J; Zhu B; Qin W; Zhao F
    Biosens Bioelectron; 2022 Nov; 215():114584. PubMed ID: 35981448
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems.
    Yu YY; Zhai DD; Si RW; Sun JZ; Liu X; Yong YC
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28054970
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide.
    Zheng Z; Xiao Y; Wu R; Mølager Christensen HE; Zhao F; Zhang J
    Biosens Bioelectron; 2019 Oct; 142():111571. PubMed ID: 31445395
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Purification and Characterization of NDH-2 Protein and Elucidating Its Role in Extracellular Electron Transport and Bioelectrogenic Activity.
    Vamshi Krishna K; Venkata Mohan S
    Front Microbiol; 2019; 10():880. PubMed ID: 31133996
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Boosting mediated electron transfer in bioelectrochemical systems with tailored defined microbial cocultures.
    Schmitz S; Rosenbaum MA
    Biotechnol Bioeng; 2018 Sep; 115(9):2183-2193. PubMed ID: 29777590
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dual detection of biochemical oxygen demand and nitrate in water based on bidirectional Shewanella loihica electron transfer.
    Yi Y; Zhao T; Xie B; Zang Y; Liu H
    Bioresour Technol; 2020 Aug; 309():123402. PubMed ID: 32361616
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhanced extracellular electron transfer between Shewanella putrefaciens and carbon felt electrode modified by bio-reduced graphene oxide.
    Zhu W; Yao M; Gao H; Wen H; Zhao X; Zhang J; Bai H
    Sci Total Environ; 2019 Nov; 691():1089-1097. PubMed ID: 31466191
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Proton Transport in the Outer-Membrane Flavocytochrome Complex Limits the Rate of Extracellular Electron Transport.
    Okamoto A; Tokunou Y; Kalathil S; Hashimoto K
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9082-9086. PubMed ID: 28608645
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in
    Li FH; Tang Q; Fan YY; Li Y; Li J; Wu JH; Luo CF; Sun H; Li WW; Yu HQ
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23001-23010. PubMed ID: 32855303
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synergistic improvement of Shewanella loihica PV-4 extracellular electron transfer using a TiO
    Su L; Yin T; Du H; Zhang W; Fu D
    Bioelectrochemistry; 2020 Aug; 134():107519. PubMed ID: 32251985
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electronic control of redox reactions inside Escherichia coli using a genetic module.
    Baruch M; Tejedor-Sanz S; Su L; Ajo-Franklin CM
    PLoS One; 2021; 16(11):e0258380. PubMed ID: 34793478
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.