BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 3217953)

  • 41. Significance of lipoidal estradiol in human mammary tumors.
    Abul-Hajj YJ; Nurieddin A
    Steroids; 1983 Oct; 42(4):417-26. PubMed ID: 6679946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of the 3 beta-hydroxysteroid dehydrogenase activity in tissue fragments and microsomes from human term placenta: kinetic analysis and inhibition by steroids.
    Raimondi SG; Olivier NS; Patrito LC; Flury A
    J Steroid Biochem; 1989 Mar; 32(3):413-20. PubMed ID: 2523011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression and regulation of estrogen receptor beta in human breast tumors and cell lines.
    Vladusic EA; Hornby AE; Guerra-Vladusic FK; Lakins J; Lupu R
    Oncol Rep; 2000; 7(1):157-67. PubMed ID: 10601611
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of human estrogen receptor using an efficient adenoviral gene delivery system is able to restore hormone-dependent features to estrogen receptor-negative breast carcinoma cells.
    Lazennec G; Katzenellenbogen BS
    Mol Cell Endocrinol; 1999 Mar; 149(1-2):93-105. PubMed ID: 10375022
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Steroid fatty acid esters in adrenals and plasma: effects of ACTH.
    Bélanger B; Caron S; Bélanger A; Dupont A
    J Endocrinol; 1990 Dec; 127(3):505-11. PubMed ID: 2177764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ZR-75-1 breast cancer cells generate nonconjugated steroids from low density lipoprotein-incorporated lipoidal dehydroepiandrosterone.
    Roy R; Bélanger A
    Endocrinology; 1993 Aug; 133(2):683-9. PubMed ID: 8344206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A survey of human breast cancer sensitivity to growth inhibition by calmodulin antagonists in tissue culture.
    Strobl JS; Peterson VA; Woodfork KA
    Biochem Pharmacol; 1994 Jun; 47(12):2157-61. PubMed ID: 8031308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adrenal androgens stimulate the proliferation of breast cancer cells as direct activators of estrogen receptor alpha.
    Maggiolini M; Donzé O; Jeannin E; Andò S; Picard D
    Cancer Res; 1999 Oct; 59(19):4864-9. PubMed ID: 10519397
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wide spectrum of steroids serving as substrates for the formation of lipoidal derivatives in ZR-75-1 human breast cancer cells.
    Poulin R; Poirier D; Thériault C; Couture J; Bélanger A; Labrie F
    J Steroid Biochem; 1990 Feb; 35(2):237-47. PubMed ID: 2308338
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estrogen inhibits the growth of estrogen receptor-negative, but not estrogen receptor-positive, human mammary epithelial cells expressing a recombinant estrogen receptor.
    Zajchowski DA; Sager R; Webster L
    Cancer Res; 1993 Oct; 53(20):5004-11. PubMed ID: 8402691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dehydroepiandrosterone-fatty acid esters in human plasma: formation, transport and delivery to steroid target tissues.
    Lavallée B; Provost PR; Roy R; Gauthier MC; Bélanger A
    J Endocrinol; 1996 Sep; 150 Suppl():S119-24. PubMed ID: 8943795
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative studies on the polyamine metabolism and DFMO treatment of MCF-7 and MDA-MB-231 breast cancer cell lines and xenografts.
    Kremmer T; Pälyi I; Daubner D; Boldizsár M; Vincze B; Paulik E; Sugár J; Pokorny E; Túry E
    Anticancer Res; 1991; 11(5):1807-13. PubMed ID: 1768053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolism of [17-2H]pregnenolone into 5-[17 beta-2H, 17 alpha-18O]androstene-3 beta, 17 alpha-diol and other products by incubation with the microsomal fraction of boar testis under 18O2 atmosphere.
    Shimizu K
    Biochim Biophys Acta; 1979 Oct; 575(1):37-45. PubMed ID: 159724
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transforming growth factors type beta 1 and beta 2 are equipotent growth inhibitors of human breast cancer cell lines.
    Zugmaier G; Ennis BW; Deschauer B; Katz D; Knabbe C; Wilding G; Daly P; Lippman ME; Dickson RB
    J Cell Physiol; 1989 Nov; 141(2):353-61. PubMed ID: 2808542
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Properties of estrogen and hydroxysteroid sulphotransferases in human mammary cancer.
    Adams JB; Phillips NS
    J Steroid Biochem; 1990 Aug; 36(6):695-701. PubMed ID: 2214786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conversion of dehydroepiandrosterone sulfate at physiological plasma concentration into estrogens in MCF-7 cells.
    Le Bail JC; Lotfi H; Charles L; Pépin D; Habrioux G
    Steroids; 2002 Dec; 67(13-14):1057-64. PubMed ID: 12441191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Delta 5-androstenediol: kinetics of metabolism and binding to plasma proteins in normal post-menopausal women.
    Bird CE; Tremblay J; Masters V; Clark AF
    Acta Endocrinol (Copenh); 1982 Feb; 99(2):309-13. PubMed ID: 6460408
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status.
    Nesaretnam K; Stephen R; Dils R; Darbre P
    Lipids; 1998 May; 33(5):461-9. PubMed ID: 9625593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosynthesis of estradiol-17 beta fatty acyl esters by microsomes derived from bovine liver and adrenals.
    Paris A; Rao D
    J Steroid Biochem; 1989 Sep; 33(3):465-72. PubMed ID: 2779237
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic fate of intraperitoneally administered 5-androstene-3 beta, 17 beta-diol, estradiol-17 beta and their combination in the immature female rat.
    van Doorn LG; Valstar E; Poortman J
    J Steroid Biochem; 1981 Jun; 14(7):657-61. PubMed ID: 7265969
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.