BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32179733)

  • 21. SETDB1 Inhibits p53-Mediated Apoptosis and Is Required for Formation of Pancreatic Ductal Adenocarcinomas in Mice.
    Ogawa S; Fukuda A; Matsumoto Y; Hanyu Y; Sono M; Fukunaga Y; Masuda T; Araki O; Nagao M; Yoshikawa T; Goto N; Hiramatsu Y; Tsuda M; Maruno T; Nakanishi Y; Hussein MS; Tsuruyama T; Takaori K; Uemoto S; Seno H
    Gastroenterology; 2020 Aug; 159(2):682-696.e13. PubMed ID: 32360551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Irreversible and sustained upregulation of endothelin axis during oncogene-associated pancreatic inflammation and cancer.
    Gupta S; Prajapati A; Gulati M; Gautam SK; Kumar S; Dalal V; Talmon GA; Rachagani S; Jain M
    Neoplasia; 2020 Feb; 22(2):98-110. PubMed ID: 31923844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activating transcription factor 3 promotes loss of the acinar cell phenotype in response to cerulein-induced pancreatitis in mice.
    Fazio EN; Young CC; Toma J; Levy M; Berger KR; Johnson CL; Mehmood R; Swan P; Chu A; Cregan SP; Dilworth FJ; Howlett CJ; Pin CL
    Mol Biol Cell; 2017 Sep; 28(18):2347-2359. PubMed ID: 28701342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interleukin-1β-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune suppression.
    Takahashi R; Macchini M; Sunagawa M; Jiang Z; Tanaka T; Valenti G; Renz BW; White RA; Hayakawa Y; Westphalen CB; Tailor Y; Iuga AC; Gonda TA; Genkinger J; Olive KP; Wang TC
    Gut; 2021 Feb; 70(2):330-341. PubMed ID: 32393543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pancreatic Ductal Deletion of Hnf1b Disrupts Exocrine Homeostasis, Leads to Pancreatitis, and Facilitates Tumorigenesis.
    Quilichini E; Fabre M; Dirami T; Stedman A; De Vas M; Ozguc O; Pasek RC; Cereghini S; Morillon L; Guerra C; Couvelard A; Gannon M; Haumaitre C
    Cell Mol Gastroenterol Hepatol; 2019; 8(3):487-511. PubMed ID: 31229598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The acinar regulator Gata6 suppresses KrasG12V-driven pancreatic tumorigenesis in mice.
    Martinelli P; Madriles F; Cañamero M; Pau EC; Pozo ND; Guerra C; Real FX
    Gut; 2016 Mar; 65(3):476-86. PubMed ID: 25596178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas.
    Wang W; Friedland SC; Guo B; O'Dell MR; Alexander WB; Whitney-Miller CL; Agostini-Vulaj D; Huber AR; Myers JR; Ashton JM; Dunne RF; Steiner LA; Hezel AF
    Gut; 2019 Jul; 68(7):1245-1258. PubMed ID: 30228219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids.
    Huang L; Desai R; Conrad DN; Leite NC; Akshinthala D; Lim CM; Gonzalez R; Muthuswamy LB; Gartner Z; Muthuswamy SK
    Cell Stem Cell; 2021 Jun; 28(6):1090-1104.e6. PubMed ID: 33915081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.
    Wauters E; Sanchez-Arévalo Lobo VJ; Pinho AV; Mawson A; Herranz D; Wu J; Cowley MJ; Colvin EK; Njicop EN; Sutherland RL; Liu T; Serrano M; Bouwens L; Real FX; Biankin AV; Rooman I
    Cancer Res; 2013 Apr; 73(7):2357-67. PubMed ID: 23370328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice.
    Morris JP; Cano DA; Sekine S; Wang SC; Hebrok M
    J Clin Invest; 2010 Feb; 120(2):508-20. PubMed ID: 20071774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer.
    Azizi N; Toma J; Martin M; Khalid MF; Mousavi F; Win PW; Borrello MT; Steele N; Shi J; di Magliano MP; Pin CL
    Oncogene; 2021 Apr; 40(17):3118-3135. PubMed ID: 33864001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The EGFR-HSF1 axis accelerates the tumorigenesis of pancreatic cancer.
    Qian W; Chen K; Qin T; Xiao Y; Li J; Yue Y; Zhou C; Ma J; Duan W; Lei J; Han L; Li L; Shen X; Wu Z; Ma Q; Wang Z
    J Exp Clin Cancer Res; 2021 Jan; 40(1):25. PubMed ID: 33422093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions.
    Lubeseder-Martellato C; Alexandrow K; Hidalgo-Sastre A; Heid I; Boos SL; Briel T; Schmid RM; Siveke JT
    EBioMedicine; 2017 Feb; 15():90-99. PubMed ID: 28057438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential Cell Susceptibilities to Kras
    Shi C; Pan FC; Kim JN; Washington MK; Padmanabhan C; Meyer CT; Kopp JL; Sander M; Gannon M; Beauchamp RD; Wright CV; Means AL
    Cell Mol Gastroenterol Hepatol; 2019; 8(4):579-594. PubMed ID: 31310834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer.
    Kalisz M; Bernardo E; Beucher A; Maestro MA; Del Pozo N; Millán I; Haeberle L; Schlensog M; Safi SA; Knoefel WT; Grau V; de Vas M; Shpargel KB; Vaquero E; Magnuson T; Ortega S; Esposito I; Real FX; Ferrer J
    EMBO J; 2020 May; 39(9):e102808. PubMed ID: 32154941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues.
    Aichler M; Seiler C; Tost M; Siveke J; Mazur PK; Da Silva-Buttkus P; Bartsch DK; Langer P; Chiblak S; Dürr A; Höfler H; Klöppel G; Müller-Decker K; Brielmeier M; Esposito I
    J Pathol; 2012 Apr; 226(5):723-34. PubMed ID: 21984419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia.
    Zhu L; Shi G; Schmidt CM; Hruban RH; Konieczny SF
    Am J Pathol; 2007 Jul; 171(1):263-73. PubMed ID: 17591971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Knockout of Acinar Enriched microRNAs in Mice Promote Duct Formation But Not Pancreatic Cancer.
    Sutaria DS; Jiang J; Azevedo-Pouly AC; Wright L; Bray JA; Fredenburg K; Liu X; Lu J; Torres C; Mancinelli G; Grippo PJ; Coppola V; Schmittgen TD
    Sci Rep; 2019 Jul; 9(1):11147. PubMed ID: 31367007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.