These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 32179743)
41. Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism. Schulze A; Beliu G; Helmerich DA; Schubert J; Pearl LH; Prodromou C; Neuweiler H Nat Chem Biol; 2016 Aug; 12(8):628-35. PubMed ID: 27322067 [TBL] [Abstract][Full Text] [Related]
42. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Meyer P; Prodromou C; Liao C; Hu B; Mark Roe S; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH EMBO J; 2004 Feb; 23(3):511-9. PubMed ID: 14739935 [TBL] [Abstract][Full Text] [Related]
43. Probing the role of Arg97 in Heat shock protein 90 N-terminal domain from the parasite Leishmania braziliensis through site-directed mutagenesis on the human counterpart. Tassone G; Mangani S; Botta M; Pozzi C Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1190-1198. PubMed ID: 30248409 [TBL] [Abstract][Full Text] [Related]
44. The influence of ATP and p23 on the conformation of hsp90. Sullivan WP; Owen BA; Toft DO J Biol Chem; 2002 Nov; 277(48):45942-8. PubMed ID: 12324468 [TBL] [Abstract][Full Text] [Related]
45. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications. Blacklock K; Verkhivker GM PLoS Comput Biol; 2014 Jun; 10(6):e1003679. PubMed ID: 24922508 [TBL] [Abstract][Full Text] [Related]
47. The ATPase cycle of Hsp90 drives a molecular 'clamp' via transient dimerization of the N-terminal domains. Prodromou C; Panaretou B; Chohan S; Siligardi G; O'Brien R; Ladbury JE; Roe SM; Piper PW; Pearl LH EMBO J; 2000 Aug; 19(16):4383-92. PubMed ID: 10944121 [TBL] [Abstract][Full Text] [Related]
48. The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Mickler M; Hessling M; Ratzke C; Buchner J; Hugel T Nat Struct Mol Biol; 2009 Mar; 16(3):281-6. PubMed ID: 19234469 [TBL] [Abstract][Full Text] [Related]
49. Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity. Street TO; Lavery LA; Verba KA; Lee CT; Mayer MP; Agard DA J Mol Biol; 2012 Jan; 415(1):3-15. PubMed ID: 22063096 [TBL] [Abstract][Full Text] [Related]
51. Conformational Cycling within the Closed State of Grp94, an Hsp90-Family Chaperone. Huang B; Friedman LJ; Sun M; Gelles J; Street TO J Mol Biol; 2019 Aug; 431(17):3312-3323. PubMed ID: 31202885 [TBL] [Abstract][Full Text] [Related]
52. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. Czemeres J; Buse K; Verkhivker GM PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381 [TBL] [Abstract][Full Text] [Related]
53. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704 [TBL] [Abstract][Full Text] [Related]
54. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics. Dixit A; Verkhivker GM PLoS One; 2012; 7(5):e37605. PubMed ID: 22624053 [TBL] [Abstract][Full Text] [Related]
55. Structure and mechanism of the Hsp90 molecular chaperone machinery. Pearl LH; Prodromou C Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493 [TBL] [Abstract][Full Text] [Related]
56. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90. Itoh H; Ogura M; Komatsuda A; Wakui H; Miura AB; Tashima Y Biochem J; 1999 Nov; 343 Pt 3(Pt 3):697-703. PubMed ID: 10527951 [TBL] [Abstract][Full Text] [Related]
57. Hsp90 dependence of a kinase is determined by its conformational landscape. Luo Q; Boczek EE; Wang Q; Buchner J; Kaila VR Sci Rep; 2017 Mar; 7():43996. PubMed ID: 28290541 [TBL] [Abstract][Full Text] [Related]
58. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. Marcu MG; Chadli A; Bouhouche I; Catelli M; Neckers LM J Biol Chem; 2000 Nov; 275(47):37181-6. PubMed ID: 10945979 [TBL] [Abstract][Full Text] [Related]
59. Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. Wegele H; Muschler P; Bunck M; Reinstein J; Buchner J J Biol Chem; 2003 Oct; 278(41):39303-10. PubMed ID: 12890674 [TBL] [Abstract][Full Text] [Related]
60. Structural basis of the key residue W320 responsible for Hsp90 conformational change. Peng S; Matts RL; Deng J J Biomol Struct Dyn; 2023 Nov; 41(19):9745-9755. PubMed ID: 36373326 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]