BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 32179774)

  • 1. Artificial Intelligence based Models for Screening of Hematologic Malignancies using Cell Population Data.
    Syed-Abdul S; Firdani RP; Chung HJ; Uddin M; Hur M; Park JH; Kim HW; Gradišek A; Dovgan E
    Sci Rep; 2020 Mar; 10(1):4583. PubMed ID: 32179774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers.
    Kawakami E; Tabata J; Yanaihara N; Ishikawa T; Koseki K; Iida Y; Saito M; Komazaki H; Shapiro JS; Goto C; Akiyama Y; Saito R; Saito M; Takano H; Yamada K; Okamoto A
    Clin Cancer Res; 2019 May; 25(10):3006-3015. PubMed ID: 30979733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of urinary tract infection based on artificial intelligence methods.
    Ozkan IA; Koklu M; Sert IU
    Comput Methods Programs Biomed; 2018 Nov; 166():51-59. PubMed ID: 30415718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance and efficiency of machine learning algorithms for analyzing rectangular biomedical data.
    Deng F; Huang J; Yuan X; Cheng C; Zhang L
    Lab Invest; 2021 Apr; 101(4):430-441. PubMed ID: 33574440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification.
    Mendez KM; Reinke SN; Broadhurst DI
    Metabolomics; 2019 Nov; 15(12):150. PubMed ID: 31728648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation.
    Kocak B; Yardimci AH; Bektas CT; Turkcanoglu MH; Erdim C; Yucetas U; Koca SB; Kilickesmez O
    Eur J Radiol; 2018 Oct; 107():149-157. PubMed ID: 30292260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms.
    Ren Z; Hu Y; Xu L
    Respir Res; 2019 Oct; 20(1):220. PubMed ID: 31619240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation.
    Afzali MH; Sunderland M; Stewart S; Masse B; Seguin J; Newton N; Teesson M; Conrod P
    Addiction; 2019 Apr; 114(4):662-671. PubMed ID: 30461117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Machine Learning Model for Prediction of Demolition Waste Generation Rate of Buildings in Redevelopment Areas.
    Cha GW; Choi SH; Hong WH; Park CW
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Machine Learning Models for Prediction of Osteoporosis from Clinical Health Examination Data.
    Ou Yang WY; Lai CC; Tsou MT; Hwang LC
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34300086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MACHINE LEARNING ALGORITHMS FOR IDENTIFICATION OF ABNORMAL GLOW CURVES AND ASSOCIATED ABNORMALITY IN CaSO4:DY-BASED PERSONNEL MONITORING DOSIMETERS.
    Pathan MS; Pradhan SM; Selvam TP
    Radiat Prot Dosimetry; 2020 Sep; 190(3):342-351. PubMed ID: 32857133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
    Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH
    Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Models Improve the Diagnostic Yield of Peripheral Blood Flow Cytometry.
    Zhang ML; Guo AX; Kadauke S; Dighe AS; Baron JM; Sohani AR
    Am J Clin Pathol; 2020 Jan; 153(2):235-242. PubMed ID: 31603184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An AI-Aided Diagnostic Framework for Hematologic Neoplasms Based on Morphologic Features and Medical Expertise.
    Li N; Fan L; Xu H; Zhang X; Bai Z; Li M; Xiong S; Jiang L; Yang J; Chen S; Qiao Y; Chen B
    Lab Invest; 2023 Apr; 103(4):100055. PubMed ID: 36870286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Clinical Deterioration in Hospitalized Adult Patients with Hematologic Malignancies Using a Neural Network Model.
    Hu SB; Wong DJ; Correa A; Li N; Deng JC
    PLoS One; 2016; 11(8):e0161401. PubMed ID: 27532679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer.
    Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Almangush A; Leivo I
    Int J Med Inform; 2020 Apr; 136():104068. PubMed ID: 31923822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoporosis risk prediction using machine learning and conventional methods.
    Kim SK; Yoo TK; Oh E; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():188-91. PubMed ID: 24109656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of artificial intelligence and machine learning for prediction of oral cancer risk.
    Alhazmi A; Alhazmi Y; Makrami A; Masmali A; Salawi N; Masmali K; Patil S
    J Oral Pathol Med; 2021 May; 50(5):444-450. PubMed ID: 33394536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models.
    Rau CS; Kuo PJ; Chien PC; Huang CY; Hsieh HY; Hsieh CH
    PLoS One; 2018; 13(11):e0207192. PubMed ID: 30412613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
    Cai B; Jiang X
    J Biomed Inform; 2014 Apr; 48():114-21. PubMed ID: 24361387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.