These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32180297)

  • 1. Efficient removal of bacteria from aqueous media with kaolinite and diatomaceous earth products.
    Johnson T; Brineman R; Schultze C; Barkovskii AL
    J Appl Microbiol; 2020 Sep; 129(3):466-473. PubMed ID: 32180297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of herbicide paraquat from an aqueous solution by adsorption onto spent and treated diatomaceous earth.
    Tsai WT; Hsien KJ; Chang YM; Lo CC
    Bioresour Technol; 2005 Apr; 96(6):657-63. PubMed ID: 15588768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of kaolin particles in the performance of a carbamate-based biocide for water bacterial control.
    Pereira MO; Vieira MJ; Melo LF
    Water Environ Res; 2002; 74(3):235-41. PubMed ID: 12150245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of copper ions from aqueous solutions by kaolinite and batch design.
    Alkan M; Kalay B; Doğan M; Demirbaş O
    J Hazard Mater; 2008 May; 153(1-2):867-76. PubMed ID: 17976907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of modified diatomaceous earth for removal and recovery of viruses in water.
    Farrah SR; Preston DR; Toranzos GA; Girard M; Erdos GA; Vasuhdivan V
    Appl Environ Microbiol; 1991 Sep; 57(9):2502-6. PubMed ID: 1768124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth.
    Al-Ghouti MA; Khraisheh MA; Allen SJ; Ahmad MN
    J Environ Manage; 2003 Nov; 69(3):229-38. PubMed ID: 14580724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and performance evaluation of Al/Fe oxide coated diatomaceous earth in groundwater defluoridation: Towards fluorosis mitigation.
    Izuagie AA; Gitari WM; Gumbo JR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):810-24. PubMed ID: 27220558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay.
    Jiang MQ; Wang QP; Jin XY; Chen ZL
    J Hazard Mater; 2009 Oct; 170(1):332-9. PubMed ID: 19464114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of Cr(III) ion from aqueous solution by two kinds of modified diatomite.
    Li E; Zeng X
    Water Sci Technol; 2012; 66(6):1340-7. PubMed ID: 22828315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of kaolinite/iron oxide magnetic composites and their use in the removal of Cd(II) from aqueous solutions.
    Zong P; Wang S; He C
    Water Sci Technol; 2013; 67(7):1642-9. PubMed ID: 23552256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earth-remediation method.
    Agdi K; Bouaid A; Esteban AM; Hernando PF; Azmani A; Camara C
    J Environ Monit; 2000 Oct; 2(5):420-3. PubMed ID: 11254043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flocculation of kaolinite suspensions in water by chitosan.
    Divakaran R; Pillai VN
    Water Res; 2001 Nov; 35(16):3904-8. PubMed ID: 12230172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm(III) and Nd(III) from aqueous solution.
    Hamadneh I; Alatawi A; Zalloum R; Albuqain R; Alsotari S; Khalili FI; Al-Dujaili AH
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20969-20980. PubMed ID: 31115818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tylosin sorption to diatomaceous earth described by Langmuir isotherm and Freundlich isotherm models.
    Stromer BS; Woodbury B; Williams CF
    Chemosphere; 2018 Feb; 193():912-920. PubMed ID: 29874766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Municipal wastewater treatment by moving-bed-biofilm reactor with diatomaceous earth as carriers.
    Zhao Y; Cao D; Liu L; Jin W
    Water Environ Res; 2006 Apr; 78(4):392-6. PubMed ID: 16749307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virus removal in ceramic depth filters based on diatomaceous earth.
    Michen B; Meder F; Rust A; Fritsch J; Aneziris C; Graule T
    Environ Sci Technol; 2012 Jan; 46(2):1170-7. PubMed ID: 22191487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption properties of kaolinite-based nanocomposites for Fe and Mn pollutants from aqueous solutions and raw ground water: kinetics and equilibrium studies.
    Shaban M; Hassouna MEM; Nasief FM; AbuKhadra MR
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22954-22966. PubMed ID: 28819905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural diatomite process for removal of radioactivity from liquid waste.
    Osmanlioglu AE
    Appl Radiat Isot; 2007 Jan; 65(1):17-20. PubMed ID: 17049259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorptive removal of 2,4,6-trichlorophenol in aqueous solution using calcined kaolinite-biomass composites.
    Olu-Owolabi BI; Alabi AH; Diagboya PN; Unuabonah EI; Düring RA
    J Environ Manage; 2017 May; 192():94-99. PubMed ID: 28157616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of p-cresol on novel diatomite/carbon composites.
    Hadjar H; Hamdi B; Ania CO
    J Hazard Mater; 2011 Apr; 188(1-3):304-10. PubMed ID: 21339051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.