These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32180333)

  • 1. A Selective Fluorogenic Peptide Substrate for the Human Mitochondrial ATP-Dependent Protease Complex ClpXP.
    Sha Z; Fishovitz J; Wang S; Chilakala S; Xu Y; Lee I
    Chembiochem; 2020 Jul; 21(14):2037-2048. PubMed ID: 32180333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Proteolytic Site-Directed Affinity Label to Inhibit the Human ATP-Dependent Protease Caseinolytic Complex XP.
    Sha Z; Chilakala S; Crabill G; Cheng I; Xu Y; Fishovitz J; Lee I
    Chembiochem; 2020 Jul; 21(14):2049-2059. PubMed ID: 32180302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active-site-directed chemical tools for profiling mitochondrial Lon protease.
    Fishovitz J; Li M; Frase H; Hudak J; Craig S; Ko K; Berdis AJ; Suzuki CK; Lee I
    ACS Chem Biol; 2011 Aug; 6(8):781-8. PubMed ID: 21520912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP.
    Kang SG; Ortega J; Singh SK; Wang N; Huang NN; Steven AC; Maurizi MR
    J Biol Chem; 2002 Jun; 277(23):21095-102. PubMed ID: 11923310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistep substrate binding and engagement by the AAA+ ClpXP protease.
    Saunders RA; Stinson BM; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28005-28013. PubMed ID: 33106413
    [No Abstract]   [Full Text] [Related]  

  • 6. Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease.
    Cheng L; Naumann TA; Horswill AR; Hong SJ; Venters BJ; Tomsho JW; Benkovic SJ; Keiler KC
    Protein Sci; 2007 Aug; 16(8):1535-42. PubMed ID: 17600141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses.
    Sriramoju MK; Chen Y; Hsu SD
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140330. PubMed ID: 31756432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protease La, the lon gene product, cleaves specific fluorogenic peptides in an ATP-dependent reaction.
    Waxman L; Goldberg AL
    J Biol Chem; 1985 Oct; 260(22):12022-8. PubMed ID: 3900067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structure and function relationship study to identify the impact of the R721G mutation in the human mitochondrial lon protease.
    Sha Z; Montano MM; Rochon K; Mears JA; Deredge D; Wintrode P; Szweda L; Mikita N; Lee I
    Arch Biochem Biophys; 2021 Oct; 710():108983. PubMed ID: 34228963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Terminal peptidic boronic acids selectively inhibit human ClpXP.
    Knott K; Fishovitz J; Thorpe SB; Lee I; Santos WL
    Org Biomol Chem; 2010 Aug; 8(15):3451-6. PubMed ID: 20523950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX.
    Lowth BR; Kirstein-Miles J; Saiyed T; Brötz-Oesterhelt H; Morimoto RI; Truscott KN; Dougan DA
    J Struct Biol; 2012 Aug; 179(2):193-201. PubMed ID: 22710082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barrel-shaped ClpP Proteases Display Attenuated Cleavage Specificities.
    Gersch M; Stahl M; Poreba M; Dahmen M; Dziedzic A; Drag M; Sieber SA
    ACS Chem Biol; 2016 Feb; 11(2):389-99. PubMed ID: 26606371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of recombinant Enterovirus 71 3C protease with fluorogenic model peptide substrates and development of a biochemical assay.
    Shang L; Zhang S; Yang X; Sun J; Li L; Cui Z; He Q; Guo Y; Sun Y; Yin Z
    Antimicrob Agents Chemother; 2015 Apr; 59(4):1827-36. PubMed ID: 25421478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of bacterial proteases with a panel of fluorescent peptide substrates.
    Wildeboer D; Jeganathan F; Price RG; Abuknesha RA
    Anal Biochem; 2009 Jan; 384(2):321-8. PubMed ID: 18957278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic characterization of the peptidase activity of Escherichia coli Lon reveals the mechanistic similarities in ATP-dependent hydrolysis of peptide and protein substrates.
    Thomas-Wohlever J; Lee I
    Biochemistry; 2002 Jul; 41(30):9418-25. PubMed ID: 12135363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly and selective "in synthesis" labeling of quenched fluorogenic protease substrates.
    Chersi A; Ferracuti S; Falasca G; Butler RH; Fruci D
    Anal Biochem; 2006 Oct; 357(2):194-9. PubMed ID: 16930525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease.
    Bolon DN; Grant RA; Baker TA; Sauer RT
    Mol Cell; 2004 Nov; 16(3):343-50. PubMed ID: 15525508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Mouse Heart Mitochondria N Terminome Provides Insights into ClpXP-Mediated Proteolysis.
    Hofsetz E; Demir F; Szczepanowska K; Kukat A; Kizhakkedathu JN; Trifunovic A; Huesgen PF
    Mol Cell Proteomics; 2020 Aug; 19(8):1330-1345. PubMed ID: 32467259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.