BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32180502)

  • 21. Virtual Reality Haptic Simulator for Endoscopic Sinus and Skull Base Surgeries.
    Kim DH; Kim HM; Park JS; Kim SW
    J Craniofac Surg; 2020 Sep; 31(6):1811-1814. PubMed ID: 32310866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training.
    Alaraj A; Charbel FT; Birk D; Tobin M; Luciano C; Banerjee PP; Rizzi S; Sorenson J; Foley K; Slavin K; Roitberg B
    Neurosurgery; 2013 Jan; 72 Suppl 1(0 1):115-23. PubMed ID: 23254799
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical Models and Virtual Reality Simulators in Otolaryngology.
    Javia L; Sardesai MG
    Otolaryngol Clin North Am; 2017 Oct; 50(5):875-891. PubMed ID: 28716337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a Mixed Reality Platform for Lateral Skull Base Anatomy.
    McJunkin JL; Jiramongkolchai P; Chung W; Southworth M; Durakovic N; Buchman CA; Silva JR
    Otol Neurotol; 2018 Dec; 39(10):e1137-e1142. PubMed ID: 30239435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-Dimensional Modeling for Augmented and Virtual Reality-Based Posterior Fossa Approach Selection Training: Technical Overview of Novel Open-Source Materials.
    Carlstrom LP; Graffeo CS; Perry A; Nguyen BT; Alexander AE; Holroyd MJ; Peris-Celda M; Driscoll CLW; Link MJ; Morris JM
    Oper Neurosurg (Hagerstown); 2022 Jun; 22(6):409-424. PubMed ID: 35867081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.
    Oishi M; Fukuda M; Hiraishi T; Yajima N; Sato Y; Fujii Y
    J Neurosurg; 2012 Sep; 117(3):555-65. PubMed ID: 22746377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.
    Li L; Yang J; Chu Y; Wu W; Xue J; Liang P; Chen L
    PLoS One; 2016; 11(1):e0146996. PubMed ID: 26757365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology.
    Ng I; Hwang PY; Kumar D; Lee CK; Kockro RA; Sitoh YY
    Acta Neurochir (Wien); 2009 May; 151(5):453-63; discussion 463. PubMed ID: 19319471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Printed Skull Base Simulation for Transnasal Endoscopic Surgical Training.
    Zheng JP; Li CZ; Chen GQ; Song GD; Zhang YZ
    World Neurosurg; 2018 Mar; 111():e773-e782. PubMed ID: 29309974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Techniques for developing and viewing stereoscopic three-dimensional teaching videos for transoral robotic surgery (TORS).
    Gomez ED; Thaler ER; O'Malley BW; Rassekh CH; Weinstein GS; Newman JG; Brody RM
    J Robot Surg; 2019 Aug; 13(4):581-584. PubMed ID: 30945096
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virtual Reality as an Educational and Training Tool for Medicine.
    Izard SG; Juanes JA; García Peñalvo FJ; Estella JMG; Ledesma MJS; Ruisoto P
    J Med Syst; 2018 Feb; 42(3):50. PubMed ID: 29392522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virtual Reality Glasses and "Eye-Hands Blind Technique" for Microsurgical Training in Neurosurgery.
    Choque-Velasquez J; Colasanti R; Collan J; Kinnunen R; Rezai Jahromi B; Hernesniemi J
    World Neurosurg; 2018 Apr; 112():126-130. PubMed ID: 29360589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual surgical planning in endoscopic skull base surgery.
    Haerle SK; Daly MJ; Chan HH; Vescan A; Kucharczyk W; Irish JC
    Laryngoscope; 2013 Dec; 123(12):2935-9. PubMed ID: 24105632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time tracking and virtual endoscopy in cone-beam CT-guided surgery of the sinuses and skull base in a cadaver model.
    Prisman E; Daly MJ; Chan H; Siewerdsen JH; Vescan A; Irish JC
    Int Forum Allergy Rhinol; 2011; 1(1):70-7. PubMed ID: 22287311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual reality simulation in neurosurgery: technologies and evolution.
    Chan S; Conti F; Salisbury K; Blevins NH
    Neurosurgery; 2013 Jan; 72 Suppl 1():154-64. PubMed ID: 23254804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of the stereoscopic virtual reality display system for the detection and characterization of intracranial aneurysms: A Icomparison with conventional computed tomography workstation and 3D rotational angiography.
    Liu X; Tao H; Xiao X; Guo B; Xu S; Sun N; Li M; Xie L; Wu C
    Clin Neurol Neurosurg; 2018 Jul; 170():93-98. PubMed ID: 29753884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional multimodality fusion imaging as an educational and planning tool for deep-seated meningiomas.
    Sato M; Tateishi K; Murata H; Kin T; Suenaga J; Takase H; Yoneyama T; Nishii T; Tateishi U; Yamamoto T; Saito N; Inoue T; Kawahara N
    Br J Neurosurg; 2018 Oct; 32(5):509-515. PubMed ID: 29943649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Extended Pterional Craniotomy: A Contemporary and Balanced Approach.
    Hendricks BK; Cohen-Gadol AA
    Oper Neurosurg (Hagerstown); 2020 Feb; 18(2):225-231. PubMed ID: 31172173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual, 3-Dimensional Temporal Bone Model and Its Educational Value for Neurosurgical Trainees.
    Morone PJ; Shah KJ; Hendricks BK; Cohen-Gadol AA
    World Neurosurg; 2019 Feb; 122():e1412-e1415. PubMed ID: 30471440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virtual Functional Endoscopic Sinus Surgery Simulation with 3D-Printed Models for Mixed-Reality Nasal Endoscopy.
    Barber SR; Jain S; Son YJ; Chang EH
    Otolaryngol Head Neck Surg; 2018 Nov; 159(5):933-937. PubMed ID: 30200812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.