These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 32180813)
21. Inhibitory effects of selected antibiotics on the activities of α-amylase and α-glucosidase: In-vitro, in-vivo and theoretical studies. Amiri B; Hosseini NS; Taktaz F; Amini K; Rahmani M; Amiri M; Sadrjavadi K; Jangholi A; Esmaeili S Eur J Pharm Sci; 2019 Oct; 138():105040. PubMed ID: 31400388 [TBL] [Abstract][Full Text] [Related]
22. Alpha-amylase Inhibition and Antioxidant Activity of Marine Green Algae and its Possible Role in Diabetes Management. Unnikrishnan PS; Suthindhiran K; Jayasri MA Pharmacogn Mag; 2015 Oct; 11(Suppl 4):S511-5. PubMed ID: 27013787 [TBL] [Abstract][Full Text] [Related]
23. An on-line detection system for screening small molecule inhibitors of α-Amylase and α-Glucosidase in Prunus mume. Nan X; Jia W; Zhang Y; Wang H; Lin Z; Chen S J Chromatogr A; 2022 Jan; 1663():462754. PubMed ID: 34954531 [TBL] [Abstract][Full Text] [Related]
25. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. Deo P; Hewawasam E; Karakoulakis A; Claudie DJ; Nelson R; Simpson BS; Smith NM; Semple SJ BMC Complement Altern Med; 2016 Nov; 16(1):435. PubMed ID: 27809834 [TBL] [Abstract][Full Text] [Related]
26. Hbika A; Daoudi NE; Bouyanzer A; Bouhrim M; Mohti H; Loukili EH; Mechchate H; Al-Salahi R; Nasr FA; Bnouham M; Zaid A Pharmaceutics; 2022 Feb; 14(3):. PubMed ID: 35335858 [No Abstract] [Full Text] [Related]
27. Chipiti T; Ibrahim MA; Singh M; Islam MS Pharmacogn Mag; 2017 Jul; 13(Suppl 2):S329-S333. PubMed ID: 28808401 [TBL] [Abstract][Full Text] [Related]
28. Crude extract and isolated bioactive compounds from Notholirion thomsonianum (Royale) Stapf as multitargets antidiabetic agents: in-vitro and molecular docking approaches. Mahnashi MH; Alqahtani YS; Alqarni AO; Alyami BA; Jan MS; Ayaz M; Ullah F; Rashid U; Sadiq A BMC Complement Med Ther; 2021 Oct; 21(1):270. PubMed ID: 34706708 [TBL] [Abstract][Full Text] [Related]
29. Antioxidative activity and inhibition of key enzymes linked to type-2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis. Ibrahim MA; Koorbanally NA; Islam MS Acta Pharm; 2014 Sep; 64(3):311-24. PubMed ID: 25296677 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices. Adefegha SA; Oboh G Pharm Biol; 2012 Jul; 50(7):857-65. PubMed ID: 22480175 [TBL] [Abstract][Full Text] [Related]
32. Machine Learning and In Vitro Chemical Screening of Potential α-Amylase and α-Glucosidase Inhibitors from Thai Indigenous Plants. Srisongkram T; Waithong S; Thitimetharoch T; Weerapreeyakul N Nutrients; 2022 Jan; 14(2):. PubMed ID: 35057448 [TBL] [Abstract][Full Text] [Related]
33. Zheng PF; Xiong Z; Liao CY; Zhang X; Feng M; Wu XZ; Lin J; Lei LS; Zhang YC; Wang SH; Xu XT J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1938-1951. PubMed ID: 34459690 [TBL] [Abstract][Full Text] [Related]
34. Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates. Ibrahim MA; Bester MJ; Neitz AW; Gaspar ARM Biomed Pharmacother; 2018 Nov; 107():234-242. PubMed ID: 30096627 [TBL] [Abstract][Full Text] [Related]
35. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe(2+)-induced lipid peroxidation in rat pancreas. Adefegha SA; Oboh G Asian Pac J Trop Biomed; 2012 Oct; 2(10):774-81. PubMed ID: 23569846 [TBL] [Abstract][Full Text] [Related]
36. An insight on medicinal attributes of 1,2,3- and 1,2,4-triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Sharma A; Dubey R; Bhupal R; Patel P; Verma SK; Kaya S; Asati V Mol Divers; 2024 Oct; 28(5):3605-3634. PubMed ID: 37733243 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and screening of (E)-3-(2-benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazine analogs as novel dual inhibitors of α-amylase and α-glucosidase. Shamim S; Khan KM; Ullah N; Chigurupati S; Wadood A; Ur Rehman A; Ali M; Salar U; Alhowail A; Taha M; Perveen S Bioorg Chem; 2020 Aug; 101():103979. PubMed ID: 32544738 [TBL] [Abstract][Full Text] [Related]
38. Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer's disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase. Riaz S; Khan IU; Bajda M; Ashraf M; Qurat-Ul-Ain ; Shaukat A; Rehman TU; Mutahir S; Hussain S; Mustafa G; Yar M Bioorg Chem; 2015 Dec; 63():64-71. PubMed ID: 26451651 [TBL] [Abstract][Full Text] [Related]
39. Potential of Sorbus berry extracts for management of type 2 diabetes: Metabolomics investigation of Broholm SL; Gramsbergen SM; Nyberg NT; Jäger AK; Staerk D J Ethnopharmacol; 2019 Oct; 242():112061. PubMed ID: 31283956 [TBL] [Abstract][Full Text] [Related]
40. Pyrano[3,2-c]quinoline Derivatives as New Class of α-glucosidase Inhibitors to Treat Type 2 Diabetes: Synthesis, in vitro Biological Evaluation and Kinetic Study. Heydari Z; Mohammadi-Khanaposhtani M; Imanparast S; Faramarzi MA; Mahdavi M; Ranjbar PR; Larijani B Med Chem; 2019; 15(1):8-16. PubMed ID: 29807519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]