These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32181242)

  • 1. LigBuilder V3: A Multi-Target
    Yuan Y; Pei J; Lai L
    Front Chem; 2020; 8():142. PubMed ID: 32181242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Target Drug Design Using LigBuilder 3.
    Qing X; Wang S; Yuan Y; Pei J; Lai L
    Methods Mol Biol; 2021; 2266():279-298. PubMed ID: 33759133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LigBuilder 2: a practical de novo drug design approach.
    Yuan Y; Pei J; Lai L
    J Chem Inf Model; 2011 May; 51(5):1083-91. PubMed ID: 21513346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of multitarget ligands with an iterative fragment-growing strategy.
    Shang E; Yuan Y; Chen X; Liu Y; Pei J; Lai L
    J Chem Inf Model; 2014 Apr; 54(4):1235-41. PubMed ID: 24611712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo design of potential RecA inhibitors using multi objective optimization.
    Sengupta S; Bandyopadhyay S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1139-54. PubMed ID: 22392725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering potent small molecule inhibitors of cyclophilin A using de novo drug design approach.
    Ni S; Yuan Y; Huang J; Mao X; Lv M; Zhu J; Shen X; Pei J; Lai L; Jiang H; Li J
    J Med Chem; 2009 Sep; 52(17):5295-8. PubMed ID: 19691347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in rationally designed dual inhibitors of HIV-1 reverse transcriptase and integrase.
    Gu SX; Xue P; Ju XL; Zhu YY
    Bioorg Med Chem; 2016 Nov; 24(21):5007-5016. PubMed ID: 27658796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Pareto Algorithm for Efficient De Novo Design of Multi-functional Molecules.
    Daeyaert F; Deem MW
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 28124835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Evaluation of HIV-1 gp120 Conformations of Soluble Trimeric gp140 Structures as Targets for de Novo Docking of First- and Second-Generation Small-Molecule CD4 Mimics.
    Moraca F; Acharya K; Melillo B; Smith AB; Chaiken I; Abrams CF
    J Chem Inf Model; 2016 Oct; 56(10):2069-2079. PubMed ID: 27602436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research progress of dual inhibitors targeting HIV-1 reverse transcriptase and integrase].
    Liu H; Zhan P; Liu XY
    Yao Xue Xue Bao; 2013 Apr; 48(4):466-76. PubMed ID: 23833931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MoleGear: A Java-Based Platform for Evolutionary De Novo Molecular Design.
    Chu Y; He X
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30979097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo ligand design to an ensemble of protein structures.
    Todorov NP; Buenemann CL; Alberts IL
    Proteins; 2006 Jul; 64(1):43-59. PubMed ID: 16555306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design.
    Andrianov AM; Anishchenko IV
    J Biomol Struct Dyn; 2009 Oct; 27(2):179-93. PubMed ID: 19583444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach.
    Kesharwani RK; Singh DV; Misra K
    J Vector Borne Dis; 2013; 50(2):93-102. PubMed ID: 23995310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetic algorithm for structure-based de novo design.
    Pegg SC; Haresco JJ; Kuntz ID
    J Comput Aided Mol Des; 2001 Oct; 15(10):911-33. PubMed ID: 11918076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided design of multi-target ligands at A
    Kalash L; Val C; Azuaje J; Loza MI; Svensson F; Zoufir A; Mervin L; Ladds G; Brea J; Glen R; Sotelo E; Bender A
    J Cheminform; 2017 Dec; 9(1):67. PubMed ID: 29290010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer Aided Drug Design for Multi-Target Drug Design: SAR /QSAR, Molecular Docking and Pharmacophore Methods.
    Abdolmaleki A; Ghasemi JB; Ghasemi F
    Curr Drug Targets; 2017; 18(5):556-575. PubMed ID: 26721410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology.
    Lim H; He D; Qiu Y; Krawczuk P; Sun X; Xie L
    PLoS Comput Biol; 2019 Jun; 15(6):e1006619. PubMed ID: 31206508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.