These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 32181334)
1. An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Dautermann O; Lyska D; Andersen-Ranberg J; Becker M; Fröhlich-Nowoisky J; Gartmann H; Krämer LC; Mayr K; Pieper D; Rij LM; Wipf HM; Niyogi KK; Lohr M Sci Adv; 2020 Mar; 6(10):eaaw9183. PubMed ID: 32181334 [TBL] [Abstract][Full Text] [Related]
2. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Dautermann O; Lohr M Plant J; 2017 Dec; 92(5):879-891. PubMed ID: 28949044 [TBL] [Abstract][Full Text] [Related]
3. Molecular factors controlling photosynthetic light harvesting by carotenoids. Polívka T; Frank HA Acc Chem Res; 2010 Aug; 43(8):1125-34. PubMed ID: 20446691 [TBL] [Abstract][Full Text] [Related]
4. Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. Bai Y; Cao T; Dautermann O; Buschbeck P; Cantrell MB; Chen Y; Lein CD; Shi X; Ware MA; Yang F; Zhang H; Zhang L; Peers G; Li X; Lohr M Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2203708119. PubMed ID: 36095219 [TBL] [Abstract][Full Text] [Related]
5. Carotenoid specificity of light-harvesting complex II binding sites. Occurrence of 9-cis-violaxanthin in the neoxanthin-binding site in the parasitic angiosperm Cuscuta reflexa. Snyder AM; Clark BM; Robert B; Ruban AV; Bungard RA J Biol Chem; 2004 Feb; 279(7):5162-8. PubMed ID: 14610095 [TBL] [Abstract][Full Text] [Related]
6. Photoprotective sites in the violaxanthin-chlorophyll a binding Protein (VCP) from Nannochloropsis gaditana. Carbonera D; Agostini A; Di Valentin M; Gerotto C; Basso S; Giacometti GM; Morosinotto T Biochim Biophys Acta; 2014 Aug; 1837(8):1235-46. PubMed ID: 24704151 [TBL] [Abstract][Full Text] [Related]
7. Photoprotective Role of Neoxanthin in Plants and Algae. Giossi C; Cartaxana P; Cruz S Molecules; 2020 Oct; 25(20):. PubMed ID: 33050573 [TBL] [Abstract][Full Text] [Related]
8. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants. Hobe S; Niemeier H; Bender A; Paulsen H Eur J Biochem; 2000 Jan; 267(2):616-24. PubMed ID: 10632733 [TBL] [Abstract][Full Text] [Related]
9. Carotenoids in algae: distributions, biosyntheses and functions. Takaichi S Mar Drugs; 2011; 9(6):1101-1118. PubMed ID: 21747749 [TBL] [Abstract][Full Text] [Related]
10. Differential Roles of Carotenes and Xanthophylls in Photosystem I Photoprotection. Cazzaniga S; Bressan M; Carbonera D; Agostini A; Dall'Osto L Biochemistry; 2016 Jul; 55(26):3636-49. PubMed ID: 27290879 [TBL] [Abstract][Full Text] [Related]
11. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Im CS; Eberhard S; Huang K; Beck CF; Grossman AR Plant J; 2006 Oct; 48(1):1-16. PubMed ID: 16972865 [TBL] [Abstract][Full Text] [Related]
12. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. Ruban AV; Lee PJ; Wentworth M; Young AJ; Horton P J Biol Chem; 1999 Apr; 274(15):10458-65. PubMed ID: 10187836 [TBL] [Abstract][Full Text] [Related]
13. Light-harvesting proteins of diatoms: their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Grossman A; Manodori A; Snyder D Mol Gen Genet; 1990 Oct; 224(1):91-100. PubMed ID: 2277634 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition. Saccon F; Durchan M; Kaňa R; Prášil O; Ruban AV; Polívka T J Phys Chem B; 2019 Nov; 123(44):9312-9320. PubMed ID: 31599594 [TBL] [Abstract][Full Text] [Related]
15. New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epoxidase activity displays changed carotenoid composition, xanthophyll cycle activity and non-photochemical quenching kinetics. Nowicka B; Strzalka W; Strzalka K J Plant Physiol; 2009 Jul; 166(10):1045-56. PubMed ID: 19278749 [TBL] [Abstract][Full Text] [Related]
16. Light-harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment-protein complexes. Alberte RS; Friedman AL; Gustafson DL; Rudnick MS; Lyman H Biochim Biophys Acta; 1981 Apr; 635(2):304-16. PubMed ID: 7016188 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary divergence of photoprotection in the green algal lineage: a plant-like violaxanthin de-epoxidase enzyme activates the xanthophyll cycle in the green alga Chlorella vulgaris modulating photoprotection. Girolomoni L; Bellamoli F; de la Cruz Valbuena G; Perozeni F; D'Andrea C; Cerullo G; Cazzaniga S; Ballottari M New Phytol; 2020 Oct; 228(1):136-150. PubMed ID: 32442330 [TBL] [Abstract][Full Text] [Related]
18. Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. Khoroshyy P; Bína D; Gardian Z; Litvín R; Alster J; Pšenčík J Photosynth Res; 2018 Mar; 135(1-3):213-225. PubMed ID: 28669083 [TBL] [Abstract][Full Text] [Related]
19. Chlorophyll-binding proteins revisited--a multigenic family of light-harvesting and stress proteins from a brown algal perspective. Dittami SM; Michel G; Collén J; Boyen C; Tonon T BMC Evol Biol; 2010 Nov; 10():365. PubMed ID: 21110855 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms. Coesel S; Oborník M; Varela J; Falciatore A; Bowler C PLoS One; 2008 Aug; 3(8):e2896. PubMed ID: 18682837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]