These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32181550)

  • 1. Effective Separation of CO
    Jin X; Foller T; Wen X; Ghasemian MB; Wang F; Zhang M; Bustamante H; Sahajwalla V; Kumar P; Kim H; Lee GH; Kalantar-Zadeh K; Joshi R
    Adv Mater; 2020 Apr; 32(17):e1907580. PubMed ID: 32181550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing.
    Chen L; Shi G; Shen J; Peng B; Zhang B; Wang Y; Bian F; Wang J; Li D; Qian Z; Xu G; Liu G; Zeng J; Zhang L; Yang Y; Zhou G; Wu M; Jin W; Li J; Fang H
    Nature; 2017 Oct; 550(7676):380-383. PubMed ID: 28992630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing GO Channels with High Selectivity for CO
    Wang H; Zheng J; Zhao J; Jin W
    Chem Asian J; 2021 Oct; 16(20):3141-3150. PubMed ID: 34374219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyoxometalate Clusters Confined in Reduced Graphene Oxide Membranes for Effective Ion Sieving and Desalination.
    Yang Y; Zhao WL; Liu Y; Wang Q; Song Z; Zhuang Q; Chen W; Song YF
    Adv Sci (Weinh); 2024 Sep; 11(36):e2402018. PubMed ID: 38887207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture.
    Shen J; Liu G; Huang K; Jin W; Lee KR; Xu N
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):578-82. PubMed ID: 25378197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Graphene Oxide Membranes for Gas Separation Applications.
    Alen SK; Nam S; Dastgheib SA
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the role of interlayer spacing in radioactive-ion sieving of functionalized graphene membranes.
    Mao C; Shao H; Huang C; Chen L; Ma L; Ren Y; Tu M; Wang H; Gu J; Ma H; Xu G
    J Hazard Mater; 2024 Aug; 475():134795. PubMed ID: 38878427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of Xylene Isomers by Precisely Tuning the Interlayer Spacing of Reduced Graphene Oxide Membrane.
    Alemayehu HG; Hou J; Qureshi AA; Yao Y; Sun Z; Yan M; Wang C; Liu L; Tang Z; Li L
    ACS Nano; 2024 Jul; 18(28):18673-18682. PubMed ID: 38951732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subnanometer Two-Dimensional Graphene Oxide Channels for Ultrafast Gas Sieving.
    Shen J; Liu G; Huang K; Chu Z; Jin W; Xu N
    ACS Nano; 2016 Mar; 10(3):3398-409. PubMed ID: 26866661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane of Functionalized Reduced Graphene Oxide Nanoplates with Angstrom-Level Channels.
    Lee B; Li K; Yoon HS; Yoon J; Mok Y; Lee Y; Lee HH; Kim YH
    Sci Rep; 2016 Jun; 6():28052. PubMed ID: 27306853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MIL-101(Cr) Microporous Nanocrystals Intercalating Graphene Oxide Membrane for Efficient Hydrogen Purification.
    Cheng L; Yang H; Chen X; Liu G; Guo Y; Liu G; Jin W
    Chem Asian J; 2021 Oct; 16(20):3162-3169. PubMed ID: 34384002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers.
    Pierleoni D; Minelli M; Ligi S; Christian M; Funke S; Reineking N; Morandi V; Doghieri F; Palermo V
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11242-11250. PubMed ID: 29522309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Interlayer Spacings in Dry Graphene Oxide Membranes via Ions.
    Liang S; Mu L; Chen L; Jiang J; Yang Y; Fang H
    Chem Asian J; 2020 Aug; 15(15):2346-2349. PubMed ID: 32212381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single- to Few-Layered, Graphene-Based Separation Membranes.
    Zhou F; Fathizadeh M; Yu M
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():17-39. PubMed ID: 29570357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Strategy to Fabricate Cation-Cross-linked Graphene Oxide Membrane with High Aqueous Stability and High Separation Performance.
    Lv XB; Xie R; Ji JY; Liu Z; Wen XY; Liu LY; Hu JQ; Ju XJ; Wang W; Chu LY
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56269-56280. PubMed ID: 33264002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Permeable Graphene Oxide/Polyelectrolytes Hybrid Thin Films for Enhanced CO
    Heo J; Choi M; Chang J; Ji D; Kang SW; Hong J
    Sci Rep; 2017 Mar; 7(1):456. PubMed ID: 28352120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permselective H
    Lin H; Liu R; Dangwal S; Kim SJ; Mehra N; Li Y; Zhu J
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28166-28175. PubMed ID: 30036034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.