These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 32181809)

  • 1. TCRBuilder: multi-state T-cell receptor structure prediction.
    Wong WK; Marks C; Leem J; Lewis AP; Shi J; Deane CM
    Bioinformatics; 2020 Jun; 36(11):3580-3581. PubMed ID: 32181809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.
    Marks C; Nowak J; Klostermann S; Georges G; Dunbar J; Shi J; Kelm S; Deane CM
    Bioinformatics; 2017 May; 33(9):1346-1353. PubMed ID: 28453681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis of the CDR Loops of Antigen Receptors.
    Wong WK; Leem J; Deane CM
    Front Immunol; 2019; 10():2454. PubMed ID: 31681328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pyHVis3D: visualising molecular simulation deduced H-bond networks in 3D: application to T-cell receptor interactions.
    Knapp B; Alcala M; Zhang H; West CE; van der Merwe PA; Deane CM
    Bioinformatics; 2018 Jun; 34(11):1941-1943. PubMed ID: 29329361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ANARCI: antigen receptor numbering and receptor classification.
    Dunbar J; Deane CM
    Bioinformatics; 2016 Jan; 32(2):298-300. PubMed ID: 26424857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing co-evolution methods and their application to template-free protein structure prediction.
    de Oliveira SH; Shi J; Deane CM
    Bioinformatics; 2017 Feb; 33(3):373-381. PubMed ID: 28171606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining co-evolution and secondary structure prediction to improve fragment library generation.
    de Oliveira SHP; Deane CM
    Bioinformatics; 2018 Jul; 34(13):2219-2227. PubMed ID: 29462243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting loop conformational ensembles.
    Marks C; Shi J; Deane CM
    Bioinformatics; 2018 Mar; 34(6):949-956. PubMed ID: 29136084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of contact prediction: evidence that contact selection in statistical contact prediction is changing.
    Chonofsky M; de Oliveira SHP; Krawczyk K; Deane CM
    Bioinformatics; 2020 Mar; 36(6):1750-1756. PubMed ID: 31693112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction.
    de Oliveira SHP; Law EC; Shi J; Deane CM
    Bioinformatics; 2018 Apr; 34(7):1132-1140. PubMed ID: 29136098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. STCRDab: the structural T-cell receptor database.
    Leem J; de Oliveira SHP; Krawczyk K; Deane CM
    Nucleic Acids Res; 2018 Jan; 46(D1):D406-D412. PubMed ID: 29087479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CommWalker: correctly evaluating modules in molecular networks in light of annotation bias.
    Luecken MD; Page MJT; Crosby AJ; Mason S; Reinert G; Deane CM
    Bioinformatics; 2018 Mar; 34(6):994-1000. PubMed ID: 29112702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DECODE: a computational pipeline to discover T cell receptor binding rules.
    Papadopoulou I; Nguyen AP; Weber A; Martínez MR
    Bioinformatics; 2022 Jun; 38(Suppl 1):i246-i254. PubMed ID: 35758821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition.
    Schneidman-Duhovny D; Khuri N; Dong GQ; Winter MB; Shifrut E; Friedman N; Craik CS; Pratt KP; Paz P; Aswad F; Sali A
    PLoS One; 2018; 13(11):e0206654. PubMed ID: 30399156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MPID-T: database for sequence-structure-function information on T-cell receptor/peptide/MHC interactions.
    Tong JC; Kong L; Tan TW; Ranganathan S
    Appl Bioinformatics; 2006; 5(2):111-4. PubMed ID: 16722775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SCALOP: sequence-based antibody canonical loop structure annotation.
    Wong WK; Georges G; Ros F; Kelm S; Lewis AP; Taddese B; Leem J; Deane CM
    Bioinformatics; 2019 May; 35(10):1774-1776. PubMed ID: 30321295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAbPred: a structure-based antibody prediction server.
    Dunbar J; Krawczyk K; Leem J; Marks C; Nowak J; Regep C; Georges G; Kelm S; Popovic B; Deane CM
    Nucleic Acids Res; 2016 Jul; 44(W1):W474-8. PubMed ID: 27131379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins.
    Abanades B; Wong WK; Boyles F; Georges G; Bujotzek A; Deane CM
    Commun Biol; 2023 May; 6(1):575. PubMed ID: 37248282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved Vδ1 Binding Geometry in a Setting of Locus-Disparate pHLA Recognition by δ/αβ T Cell Receptors (TCRs): Insight into Recognition of HIV Peptides by TCRs.
    Shi Y; Kawana-Tachikawa A; Gao F; Qi J; Liu C; Gao J; Cheng H; Ueno T; Iwamoto A; Gao GF
    J Virol; 2017 Sep; 91(17):. PubMed ID: 28615212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.