These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32182079)

  • 1. Experimental Realization of Two-Dimensional Buckled Lieb Lattice.
    Feng H; Liu C; Zhou S; Gao N; Gao Q; Zhuang J; Xu X; Hu Z; Wang J; Chen L; Zhao J; Dou SX; Du Y
    Nano Lett; 2020 Apr; 20(4):2537-2543. PubMed ID: 32182079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realization of a 2D Lieb Lattice in a Metal-Inorganic Framework with Partial Flat Bands and Topological Edge States.
    Wu W; Sun S; Tang CS; Wu J; Ma Y; Zhang L; Cai C; Zhong J; Milošević MV; Wee ATS; Yin X
    Adv Mater; 2024 Oct; 36(40):e2405615. PubMed ID: 39180271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks.
    Jiang W; Ni X; Liu F
    Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental realization and characterization of an electronic Lieb lattice.
    Slot MR; Gardenier TS; Jacobse PH; van Miert GCP; Kempkes SN; Zevenhuizen SJM; Smith CM; Vanmaekelbergh D; Swart I
    Nat Phys; 2017 Jul; 13(7):672-676. PubMed ID: 28706560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ag
    Yang T; Luo YZ; Wang Z; Zhu T; Pan H; Wang S; Lau SP; Feng YP; Yang M
    Nanoscale; 2021 Sep; 13(33):14008-14015. PubMed ID: 34477681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological Band Engineering of Lieb Lattice in Phthalocyanine-Based Metal-Organic Frameworks.
    Jiang W; Zhang S; Wang Z; Liu F; Low T
    Nano Lett; 2020 Mar; 20(3):1959-1966. PubMed ID: 32078326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism.
    Jiang W; Huang H; Liu F
    Nat Commun; 2019 May; 10(1):2207. PubMed ID: 31101812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of Two-Dimensional Intrinsic Polar Metal in a Buckled Honeycomb Binary Lattice.
    Wang Y; Li D; Duan S; Sun S; Ding Y; Bussolotti F; Sun M; Chen M; Wang M; Chen L; Wu K; Goh KEJ; Wee ATS; Zhou M; Feng B; Hua C; Huang YL; Chen W
    Adv Mater; 2024 Sep; 36(36):e2404341. PubMed ID: 39030759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Dirac Nodal Line in Nearly Freestanding Electronic Structure of β-Sn Monolayer.
    Lan YS; Chen CJ; Kuo SH; Lin YH; Huang A; Huang JY; Hsu PJ; Cheng CM; Jeng HT
    ACS Nano; 2024 Aug; 18(32):20990-20998. PubMed ID: 39086236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epitaxial growth of two-dimensional stanene.
    Zhu FF; Chen WJ; Xu Y; Gao CL; Guan DD; Liu CH; Qian D; Zhang SC; Jia JF
    Nat Mater; 2015 Oct; 14(10):1020-5. PubMed ID: 26237127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serendipity of a topological nontrivial band gap in the 2D borophene subunit lattice with broken mirror symmetry.
    Wang A; Shen L; Zhao M; Zhang X; He T; Li W; Feng Y; Liu H
    Phys Chem Chem Phys; 2019 Oct; 21(40):22526-22530. PubMed ID: 31588445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room temperature quantum spin Hall insulators with a buckled square lattice.
    Luo W; Xiang H
    Nano Lett; 2015 May; 15(5):3230-5. PubMed ID: 25822125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic
    Zhang Y; Zhao S; Položij M; Heine T
    Chem Sci; 2024 Apr; 15(15):5757-5763. PubMed ID: 38638224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoemission Spectroscopic Evidence for the Dirac Nodal Line in the Monoclinic Semimetal SrAs_{3}.
    Song YK; Wang GW; Li SC; Liu WL; Lu XL; Liu ZT; Li ZJ; Wen JS; Yin ZP; Liu ZH; Shen DW
    Phys Rev Lett; 2020 Feb; 124(5):056402. PubMed ID: 32083898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realization of Honeycomb Tellurene with Topological Edge States.
    Liu J; Jiang Q; Huang B; Han X; Lu X; Ma N; Chen J; Mei H; Di Z; Liu Z; Li A; Ye M
    Nano Lett; 2024 Jul; 24(30):9296-9301. PubMed ID: 39037306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triangular Spin-Orbit-Coupled Lattice with Strong Coulomb Correlations: Sn Atoms on a SiC(0001) Substrate.
    Glass S; Li G; Adler F; Aulbach J; Fleszar A; Thomale R; Hanke W; Claessen R; Schäfer J
    Phys Rev Lett; 2015 Jun; 114(24):247602. PubMed ID: 26197013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice.
    Ding C; Gao H; Geng W; Zhao M
    Nanoscale Adv; 2021 Feb; 3(4):1127-1135. PubMed ID: 36133292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of a graphene-like Sn-sheet on a Au(111) substrate: electronic structure and transport properties from first principles calculations.
    Nigam S; Gupta S; Banyai D; Pandey R; Majumder C
    Phys Chem Chem Phys; 2015 Mar; 17(10):6705-12. PubMed ID: 25683839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.