BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 32182145)

  • 1. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization.
    Badizadegan K; Goodson JL; Rota PA; Thompson KM
    Expert Rev Vaccines; 2020 Feb; 19(2):175-194. PubMed ID: 32182145
    [No Abstract]   [Full Text] [Related]  

  • 2. Microneedle Patches as Drug and Vaccine Delivery Platform.
    Li J; Zeng M; Shan H; Tong C
    Curr Med Chem; 2017; 24(22):2413-2422. PubMed ID: 28552053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin.
    Prausnitz MR
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():177-200. PubMed ID: 28375775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolving Microneedle Patches for Dermal Vaccination.
    Leone M; Mönkäre J; Bouwstra JA; Kersten G
    Pharm Res; 2017 Nov; 34(11):2223-2240. PubMed ID: 28718050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential use of microarray patches for vaccine delivery in low- and middle- income countries.
    Peyraud N; Zehrung D; Jarrahian C; Frivold C; Orubu T; Giersing B
    Vaccine; 2019 Jul; 37(32):4427-4434. PubMed ID: 31262587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rabies vaccination in dogs using a dissolving microneedle patch.
    Arya JM; Dewitt K; Scott-Garrard M; Chiang YW; Prausnitz MR
    J Control Release; 2016 Oct; 239():19-26. PubMed ID: 27524283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microneedle Systems for Vaccine Delivery: the story so far.
    Hossain MK; Ahmed T; Bhusal P; Subedi RK; Salahshoori I; Soltani M; Hassanzadeganroudsari M
    Expert Rev Vaccines; 2020 Dec; 19(12):1153-1166. PubMed ID: 33427523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microneedle patches for vaccination in developing countries.
    Arya J; Prausnitz MR
    J Control Release; 2016 Oct; 240():135-141. PubMed ID: 26603347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the Potential Cost-Effectiveness of Microneedle Patches in Childhood Measles Vaccination Programs: The Case for Further Research and Development.
    Adhikari BB; Goodson JL; Chu SY; Rota PA; Meltzer MI
    Drugs R D; 2016 Dec; 16(4):327-338. PubMed ID: 27696306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of novel double-decker microneedle patches for transcutaneous vaccine delivery.
    Ono A; Azukizawa H; Ito S; Nakamura Y; Asada H; Quan YS; Kamiyama F; Katayama I; Hirobe S; Okada N
    Int J Pharm; 2017 Oct; 532(1):374-383. PubMed ID: 28855138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transdermal immunization: biological framework and translational perspectives.
    Mishra DK; Dhote V; Mishra PK
    Expert Opin Drug Deliv; 2013 Feb; 10(2):183-200. PubMed ID: 23256860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcutaneous immunization with Intercell's vaccine delivery system.
    Seid RC; Look JL; Ruiz C; Frolov V; Flyer D; Schafer J; Ellingsworth L
    Vaccine; 2012 Jun; 30(29):4349-54. PubMed ID: 22682290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating the development of vaccine microarray patches for epidemic response and equitable immunization coverage requires investment in microarray patch manufacturing facilities.
    Scarnà T; Menozzi-Arnaud M; Friede M; DeMarco K; Plopper G; Hamer M; Chakrabarti A; Gilbert PA; Jarrahian C; Mistilis J; Hesselink R; Gandrup-Marino K; Amorij JP; Giersing B
    Expert Opin Drug Deliv; 2023 Mar; 20(3):315-322. PubMed ID: 36649573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases.
    Korkmaz E; Balmert SC; Carey CD; Erdos G; Falo LD
    Expert Opin Drug Deliv; 2021 Feb; 18(2):151-167. PubMed ID: 32924651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcutaneous vaccines--current and emerging strategies.
    Hirobe S; Okada N; Nakagawa S
    Expert Opin Drug Deliv; 2013 Apr; 10(4):485-98. PubMed ID: 23316778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microneedles for vaccine delivery: challenges and future perspectives.
    Shin CI; Jeong SD; Rejinold NS; Kim YC
    Ther Deliv; 2017 Jun; 8(6):447-460. PubMed ID: 28530151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential effects of introducing microneedle patch vaccines into routine vaccine supply chains.
    Wedlock PT; Mitgang EA; Elsheikh F; Leonard J; Bakal J; Welling J; Crawford J; Assy E; Magadzire BP; Bechtel R; DePasse JV; Siegmund SS; Brown ST; Lee BY
    Vaccine; 2019 Jan; 37(4):645-651. PubMed ID: 30578088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization.
    Chen X; Fernando GJ; Crichton ML; Flaim C; Yukiko SR; Fairmaid EJ; Corbett HJ; Primiero CA; Ansaldo AB; Frazer IH; Brown LE; Kendall MA
    J Control Release; 2011 Jun; 152(3):349-55. PubMed ID: 21371510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray patches: scratching the surface of vaccine delivery.
    Choo JJY; McMillan CLD; Young PR; Muller DA
    Expert Rev Vaccines; 2023; 22(1):937-955. PubMed ID: 37846657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microneedle patch delivery of influenza vaccine during pregnancy enhances maternal immune responses promoting survival and long-lasting passive immunity to offspring.
    Esser ES; Pulit-Penaloza JA; Kalluri H; McAllister D; Vassilieva EV; Littauer EQ; Lelutiu N; Prausnitz MR; Compans RW; Skountzou I
    Sci Rep; 2017 Jul; 7(1):5705. PubMed ID: 28720851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.