BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 32182160)

  • 1. Multiplexed Phosphoproteomic Study of Brain in Patients with Alzheimer's Disease and Age-Matched Cognitively Healthy Controls.
    Sathe G; Mangalaparthi KK; Jain A; Darrow J; Troncoso J; Albert M; Moghekar A; Pandey A
    OMICS; 2020 Apr; 24(4):216-227. PubMed ID: 32182160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomic analysis of the frontal cortex in Alzheimer's disease.
    Sathe G; Albert M; Darrow J; Saito A; Troncoso J; Pandey A; Moghekar A
    J Neurochem; 2021 Mar; 156(6):988-1002. PubMed ID: 32614981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): phosphoproteomics of Alzheimer's NFTs.
    Rudrabhatla P; Jaffe H; Pant HC
    FASEB J; 2011 Nov; 25(11):3896-905. PubMed ID: 21828286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer's disease.
    Ping L; Kundinger SR; Duong DM; Yin L; Gearing M; Lah JJ; Levey AI; Seyfried NT
    Sci Data; 2020 Sep; 7(1):315. PubMed ID: 32985496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic Profiling of Plasma and Brain Tissue from Alzheimer's Disease Patients Reveals Candidate Network of Plasma Biomarkers.
    Chen M; Xia W
    J Alzheimers Dis; 2020; 76(1):349-368. PubMed ID: 32474469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative phosphoproteomic analyses of the inferior parietal lobule from three different pathological stages of Alzheimer's disease.
    Triplett JC; Swomley AM; Cai J; Klein JB; Butterfield DA
    J Alzheimers Dis; 2016; 49(1):45-62. PubMed ID: 26444780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose oral copper treatment changes the hippocampal phosphoproteomic profile and perturbs mitochondrial function in a mouse model of Alzheimer's disease.
    Chen C; Jiang X; Li Y; Yu H; Li S; Zhang Z; Xu H; Yang Y; Liu G; Zhu F; Ren X; Zou L; Xu B; Liu J; Spencer PS; Yang X
    Free Radic Biol Med; 2019 May; 135():144-156. PubMed ID: 30862541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological Dissection of Proteomic Changes Linked to the Limbic Stage of Alzheimer's Disease.
    Velásquez E; Szeitz B; Gil J; Rodriguez J; Palkovits M; Renner É; Hortobágyi T; Döme P; Nogueira FC; Marko-Varga G; Domont GB; Rezeli M
    Front Immunol; 2021; 12():750665. PubMed ID: 34712240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins.
    Dammer EB; Lee AK; Duong DM; Gearing M; Lah JJ; Levey AI; Seyfried NT
    Proteomics; 2015 Jan; 15(2-3):508-519. PubMed ID: 25332170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomic profiling of selenate-treated Alzheimer's disease model cells.
    Chen P; Wang L; Wang Y; Li S; Shen L; Liu Q; Ni J
    PLoS One; 2014; 9(12):e113307. PubMed ID: 25485856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refined phosphopeptide enrichment by phosphate additive and the analysis of human brain phosphoproteome.
    Tan H; Wu Z; Wang H; Bai B; Li Y; Wang X; Zhai B; Beach TG; Peng J
    Proteomics; 2015 Jan; 15(2-3):500-7. PubMed ID: 25307156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylated tau interactome in the human Alzheimer's disease brain.
    Drummond E; Pires G; MacMurray C; Askenazi M; Nayak S; Bourdon M; Safar J; Ueberheide B; Wisniewski T
    Brain; 2020 Sep; 143(9):2803-2817. PubMed ID: 32812023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Role of Aggregated Proteomes in the Pathogenesis of Alzheimer's Disease.
    Narayanan SE; Sekhar N; Rajamma RG; Marathakam A; Al Mamun A; Uddin MS; Mathew B
    Curr Protein Pept Sci; 2020; 21(12):1164-1173. PubMed ID: 32957903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry.
    Xia Q; Cheng D; Duong DM; Gearing M; Lah JJ; Levey AI; Peng J
    J Proteome Res; 2008 Jul; 7(7):2845-51. PubMed ID: 18510355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer's disease.
    Mendonça CF; Kuras M; Nogueira FCS; Plá I; Hortobágyi T; Csiba L; Palkovits M; Renner É; Döme P; Marko-Varga G; Domont GB; Rezeli M
    Neurobiol Dis; 2019 Oct; 130():104509. PubMed ID: 31207390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics analysis of prefrontal cortex of Alzheimer's disease patients revealed dysregulated proteins in the disease and novel proteins associated with amyloid-β pathology.
    Montero-Calle A; Coronel R; Garranzo-Asensio M; Solís-Fernández G; Rábano A; de Los Ríos V; Fernández-Aceñero MJ; Mendes ML; Martínez-Useros J; Megías D; Moreno-Casbas MT; Peláez-García A; Liste I; Barderas R
    Cell Mol Life Sci; 2023 May; 80(6):141. PubMed ID: 37149819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoprotein network analysis of corneal epithelium of keratoconus patients.
    Amit C; Ghose V; Narayanan J; Padmanabhan P; Sathe G; Elchuri S
    Proteomics; 2022 Sep; 22(18):e2100416. PubMed ID: 35776780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and functional signatures in a novel Alzheimer's disease mouse model assessed by quantitative proteomics.
    Kim DK; Park J; Han D; Yang J; Kim A; Woo J; Kim Y; Mook-Jung I
    Mol Neurodegener; 2018 Jan; 13(1):2. PubMed ID: 29338754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease.
    Hondius DC; Koopmans F; Leistner C; Pita-Illobre D; Peferoen-Baert RM; Marbus F; Paliukhovich I; Li KW; Rozemuller AJM; Hoozemans JJM; Smit AB
    Acta Neuropathol; 2021 Mar; 141(3):341-358. PubMed ID: 33492460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles.
    Iqbal K; Alonso AC; Gong CX; Khatoon S; Pei JJ; Wang JZ; Grundke-Iqbal I
    J Neural Transm Suppl; 1998; 53():169-80. PubMed ID: 9700655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.