BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32182259)

  • 1. Systematic re-evaluation of the long-used standard protocol of urease-dependent metabolome sample preparation.
    Kim J; Ahn JK; Cheong YE; Lee SJ; Cha HS; Kim KH
    PLoS One; 2020; 15(3):e0230072. PubMed ID: 32182259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urine metabolome analysis by gas chromatography-mass spectrometry (GC-MS): Standardization and optimization of protocols for urea removal and short-term sample storage.
    Palmas F; Mussap M; Fattuoni C
    Clin Chim Acta; 2018 Oct; 485():236-242. PubMed ID: 30008426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urease-immobilized magnetic microparticles in urine sample preparation for metabolomic analysis by gas chromatography-mass spectrometry.
    Jáčová J; Jořenek M; Pospíšková K; Najdekr L; Zajoncová L; Friedecký D; Adam T
    J Chromatogr A; 2019 Nov; 1605():360355. PubMed ID: 31315811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass spectrometric based approaches in urine metabolomics and biomarker discovery.
    Khamis MM; Adamko DJ; El-Aneed A
    Mass Spectrom Rev; 2017 Mar; 36(2):115-134. PubMed ID: 25881008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of strategies for untargeted urinary metabolomic analysis using gas chromatography-mass spectrometry.
    Khodadadi M; Pourfarzam M
    Metabolomics; 2020 May; 16(6):66. PubMed ID: 32419109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery.
    Peng J; Chen YT; Chen CL; Li L
    Anal Chem; 2014 Jul; 86(13):6540-7. PubMed ID: 24877652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of dilution and normalization strategies to correct for urinary output in HPLC-HRTOFMS metabolomics.
    Vogl FC; Mehrl S; Heizinger L; Schlecht I; Zacharias HU; Ellmann L; Nürnberger N; Gronwald W; Leitzmann MF; Rossert J; Eckardt KU; Dettmer K; Oefner PJ;
    Anal Bioanal Chem; 2016 Nov; 408(29):8483-8493. PubMed ID: 27815612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new metabolomics-based strategy for identification of endogenous markers of urine adulteration attempts exemplified for potassium nitrite.
    Steuer AE; Arnold K; Schneider TD; Poetzsch M; Kraemer T
    Anal Bioanal Chem; 2017 Oct; 409(26):6235-6244. PubMed ID: 28815274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies.
    Bi H; Guo Z; Jia X; Liu H; Ma L; Xue L
    Metabolomics; 2020 May; 16(6):68. PubMed ID: 32451742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Protocol for Untargeted Metabolomic Analysis: From Sample Preparation to Data Processing.
    Souza AL; Patti GJ
    Methods Mol Biol; 2021; 2276():357-382. PubMed ID: 34060055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics.
    Chetwynd AJ; Abdul-Sada A; Hill EM
    Anal Chem; 2015 Jan; 87(2):1158-65. PubMed ID: 25521704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods used to increase the comprehensive coverage of urinary and plasma metabolomes by MS.
    Chen Y; Xu J; Zhang R; Abliz Z
    Bioanalysis; 2016 May; 8(9):981-97. PubMed ID: 27079429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A short review of applications of liquid chromatography mass spectrometry based metabolomics techniques to the analysis of human urine.
    Zhang T; Watson DG
    Analyst; 2015 May; 140(9):2907-15. PubMed ID: 25756251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of metabolome sample preparation and extraction methodologies for oleaginous filamentous fungi Mortierella alpina.
    Lu H; Chen H; Tang X; Yang Q; Zhang H; Chen YQ; Chen W
    Metabolomics; 2019 Mar; 15(4):50. PubMed ID: 30900034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ultrahigh-Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome.
    Esteban-Fernández A; Ibañez C; Simó C; Bartolomé B; Moreno-Arribas MV
    J Proteome Res; 2018 Apr; 17(4):1624-1635. PubMed ID: 29485285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating time-dependent changes in the urinary metabolome of renal transplant patients by a combined (1)H NMR and GC-MS approach.
    Kienana M; Lydie ND; Jean-Michel H; Binta D; Matthias B; Patrick E; Hélène B; Chantal le G
    Mol Biosyst; 2015 Sep; 11(9):2493-510. PubMed ID: 26161811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry.
    Hušek P; Švagera Z; Hanzlíková D; Řimnáčová L; Zahradníčková H; Opekarová I; Šimek P
    J Chromatogr A; 2016 Apr; 1443():211-32. PubMed ID: 27012787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in metabolite profiles caused by pre-analytical blood processing procedures.
    Nishiumi S; Suzuki M; Kobayashi T; Yoshida M
    J Biosci Bioeng; 2018 May; 125(5):613-618. PubMed ID: 29258730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Statistical Analysis of the Effects of Urease Pre-treatment on the Measurement of the Urinary Metabolome by Gas Chromatography-Mass Spectrometry.
    Webb-Robertson BJ; Kim YM; Zink EM; Hallaian KA; Zhang Q; Madupu R; Waters KM; Metz TO
    Metabolomics; 2014 Oct; 10(5):897-908. PubMed ID: 25254001
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.