BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32182345)

  • 1. Using GARDEN-NET and ChAseR to explore human haematopoietic 3D chromatin interaction networks.
    Madrid-Mencía M; Raineri E; Cao TBN; Pancaldi V
    Nucleic Acids Res; 2020 May; 48(8):4066-4080. PubMed ID: 32182345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
    Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D
    Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic identification of informative regions with epigenomic changes associated to hematopoiesis.
    Carrillo-de-Santa-Pau E; Juan D; Pancaldi V; Were F; Martin-Subero I; Rico D; Valencia A;
    Nucleic Acids Res; 2017 Sep; 45(16):9244-9259. PubMed ID: 28934481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An annotated list of bivalent chromatin regions in human ES cells: a new tool for cancer epigenetic research.
    Court F; Arnaud P
    Oncotarget; 2017 Jan; 8(3):4110-4124. PubMed ID: 27926531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering cooperative relationships of chromatin modifications in human T cells based on a proposed closeness measure.
    Lv J; Qiao H; Liu H; Wu X; Zhu J; Su J; Wang F; Cui Y; Zhang Y
    PLoS One; 2010 Dec; 5(12):e14219. PubMed ID: 21151929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage.
    Szutorisz H; Canzonetta C; Georgiou A; Chow CM; Tora L; Dillon N
    Mol Cell Biol; 2005 Mar; 25(5):1804-20. PubMed ID: 15713636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Irreversible Transcriptional Reprogramming in Human Stem Cells Accompanied by Discordance between Replication Timing and Chromatin Compartment.
    Dileep V; Wilson KA; Marchal C; Lyu X; Zhao PA; Li B; Poulet A; Bartlett DA; Rivera-Mulia JC; Qin ZS; Robins AJ; Schulz TC; Kulik MJ; McCord RP; Dekker J; Dalton S; Corces VG; Gilbert DM
    Stem Cell Reports; 2019 Jul; 13(1):193-206. PubMed ID: 31231024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide approaches to studying chromatin modifications.
    Schones DE; Zhao K
    Nat Rev Genet; 2008 Mar; 9(3):179-91. PubMed ID: 18250624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.
    Thibodeau A; Márquez EJ; Luo O; Ruan Y; Menghi F; Shin DG; Stitzel ML; Vera-Licona P; Ucar D
    PLoS Comput Biol; 2016 Jun; 12(6):e1004809. PubMed ID: 27336171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin modifications and genomic contexts linked to dynamic DNA methylation patterns across human cell types.
    Yan H; Zhang D; Liu H; Wei Y; Lv J; Wang F; Zhang C; Wu Q; Su J; Zhang Y
    Sci Rep; 2015 Feb; 5():8410. PubMed ID: 25673498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA).
    Richard Albert J; Koike T; Younesy H; Thompson R; Bogutz AB; Karimi MM; Lorincz MC
    BMC Genomics; 2018 Jun; 19(1):463. PubMed ID: 29907088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity.
    Du Q; Smith GC; Luu PL; Ferguson JM; Armstrong NJ; Caldon CE; Campbell EM; Nair SS; Zotenko E; Gould CM; Buckley M; Chia KM; Portman N; Lim E; Kaczorowski D; Chan CL; Barton K; Deveson IW; Smith MA; Powell JE; Skvortsova K; Stirzaker C; Achinger-Kawecka J; Clark SJ
    Cell Rep; 2021 Sep; 36(12):109722. PubMed ID: 34551299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic plasticity of chromatin in embryonic and hematopoietic stem/progenitor cells: therapeutic potential of cell reprogramming.
    Zardo G; Cimino G; Nervi C
    Leukemia; 2008 Aug; 22(8):1503-18. PubMed ID: 18548105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone modifications in zebrafish development.
    Cunliffe VT
    Methods Cell Biol; 2016; 135():361-85. PubMed ID: 27443936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DGW: an exploratory data analysis tool for clustering and visualisation of epigenomic marks.
    Lukauskas S; Visintainer R; Sanguinetti G; Schweikert GB
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):447. PubMed ID: 28105912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic insights into chromatin reprogramming to totipotency in embryos.
    Ladstätter S; Tachibana K
    J Cell Biol; 2019 Jan; 218(1):70-82. PubMed ID: 30257850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-of-origin chromatin organization shapes the mutational landscape of cancer.
    Polak P; Karlić R; Koren A; Thurman R; Sandstrom R; Lawrence M; Reynolds A; Rynes E; Vlahoviček K; Stamatoyannopoulos JA; Sunyaev SR
    Nature; 2015 Feb; 518(7539):360-364. PubMed ID: 25693567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YHMI: a web tool to identify histone modifications and histone/chromatin regulators from a gene list in yeast.
    Wu WS; Tu HP; Chu YH; Nordling TEM; Tseng YY; Liaw HJ
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 30371756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the implication of the histone code in building the genome structure.
    Prakash K; Fournier D
    Biosystems; 2018 Feb; 164():49-59. PubMed ID: 29158132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.