These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 32182595)
1. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography. He X; Guo BJ; Lei Y; Wang T; Fu Y; Curran WJ; Zhang LJ; Liu T; Yang X Phys Med Biol; 2020 May; 65(9):095012. PubMed ID: 32182595 [TBL] [Abstract][Full Text] [Related]
2. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation. Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118 [TBL] [Abstract][Full Text] [Related]
3. Segmentation and volume quantification of epicardial adipose tissue in computed tomography images. Li Y; Song S; Sun Y; Bao N; Yang B; Xu L Med Phys; 2022 Oct; 49(10):6477-6490. PubMed ID: 36047382 [TBL] [Abstract][Full Text] [Related]
4. Automatic quantification of myocardium and pericardial fat from coronary computed tomography angiography: a multicenter study. He X; Guo BJ; Lei Y; Wang T; Curran WJ; Liu T; Zhang LJ; Yang X Eur Radiol; 2021 Jun; 31(6):3826-3836. PubMed ID: 33206226 [TBL] [Abstract][Full Text] [Related]
5. Automatic quantification of epicardial adipose tissue volume. Li X; Sun Y; Xu L; Greenwald SE; Zhang L; Zhang R; You H; Yang B Med Phys; 2021 Aug; 48(8):4279-4290. PubMed ID: 34062000 [TBL] [Abstract][Full Text] [Related]
6. A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans. Militello C; Rundo L; Toia P; Conti V; Russo G; Filorizzo C; Maffei E; Cademartiri F; La Grutta L; Midiri M; Vitabile S Comput Biol Med; 2019 Nov; 114():103424. PubMed ID: 31521896 [TBL] [Abstract][Full Text] [Related]
7. Quantification of epicardial adipose tissue in coronary calcium score and CT coronary angiography image data sets: comparison of attenuation values, thickness and volumes. La Grutta L; Toia P; Farruggia A; Albano D; Grassedonio E; Palmeri A; Maffei E; Galia M; Vitabile S; Cademartiri F; Midiri M Br J Radiol; 2016 Jun; 89(1062):20150773. PubMed ID: 26987374 [TBL] [Abstract][Full Text] [Related]
8. Thyroid gland delineation in noncontrast-enhanced CTs using deep convolutional neural networks. He X; Guo BJ; Lei Y; Tian S; Wang T; Curran WJ; Zhang LJ; Liu T; Yang X Phys Med Biol; 2021 Feb; 66(5):055007. PubMed ID: 33590826 [TBL] [Abstract][Full Text] [Related]
9. Relationship between coronary artery disease and epicardial adipose tissue quantification at cardiac CT: comparison between automatic volumetric measurement and manual bidimensional estimation. Bastarrika G; Broncano J; Schoepf UJ; Schwarz F; Lee YS; Abro JA; Costello P; Zwerner PL Acad Radiol; 2010 Jun; 17(6):727-34. PubMed ID: 20363161 [TBL] [Abstract][Full Text] [Related]
10. Epicardial adipose tissue is associated with high-risk plaque feature progression in non-culprit lesions. Tan Y; Zhou J; Zhou Y; Yang X; Wang J; Chen Y Int J Cardiovasc Imaging; 2017 Dec; 33(12):2029-2037. PubMed ID: 28550587 [TBL] [Abstract][Full Text] [Related]
11. Relationship between quantitative epicardial adipose tissue based on coronary computed tomography angiography and coronary slow flow. Tong J; Bei GG; Zhang LB; Sun Y; Qi M; Yang BQ BMC Cardiovasc Disord; 2023 Oct; 23(1):500. PubMed ID: 37817079 [TBL] [Abstract][Full Text] [Related]
12. Automated quantification of epicardial adipose tissue using CT angiography: evaluation of a prototype software. Spearman JV; Meinel FG; Schoepf UJ; Apfaltrer P; Silverman JR; Krazinski AW; Canstein C; De Cecco CN; Costello P; Geyer LL Eur Radiol; 2014 Feb; 24(2):519-26. PubMed ID: 24192980 [TBL] [Abstract][Full Text] [Related]
13. Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiography; comparison with manual assessment and correlation with coronary artery disease. Mihl C; Loeffen D; Versteylen MO; Takx RA; Nelemans PJ; Nijssen EC; Vega-Higuera F; Wildberger JE; Das M J Cardiovasc Comput Tomogr; 2014; 8(3):215-21. PubMed ID: 24939070 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT. Commandeur F; Goeller M; Betancur J; Cadet S; Doris M; Chen X; Berman DS; Slomka PJ; Tamarappoo BK; Dey D IEEE Trans Med Imaging; 2018 Aug; 37(8):1835-1846. PubMed ID: 29994362 [TBL] [Abstract][Full Text] [Related]
15. Is the epicardial adipose tissue area on non-ECG gated low-dose chest CT useful for predicting coronary atherosclerosis in an asymptomatic population considered for lung cancer screening? Lee KC; Yong HS; Lee J; Kang EY; Na JO Eur Radiol; 2019 Feb; 29(2):932-940. PubMed ID: 29955949 [TBL] [Abstract][Full Text] [Related]
16. Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques. Tachibana M; Miyoshi T; Osawa K; Toh N; Oe H; Nakamura K; Naito T; Sato S; Kanazawa S; Ito H Heart Vessels; 2016 Nov; 31(11):1758-1766. PubMed ID: 26833041 [TBL] [Abstract][Full Text] [Related]
17. Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach. Shahzad R; Bos D; Metz C; Rossi A; Kirisli H; van der Lugt A; Klein S; Witteman J; de Feyter P; Niessen W; van Vliet L; van Walsum T Med Phys; 2013 Sep; 40(9):091910. PubMed ID: 24007161 [TBL] [Abstract][Full Text] [Related]
18. Fully automated epicardial adipose tissue volume quantification with deep learning and relationship with CAC score and micro/macrovascular complications in people living with type 2 diabetes: the multicenter EPIDIAB study. Gaborit B; Julla JB; Fournel J; Ancel P; Soghomonian A; Deprade C; Lasbleiz A; Houssays M; Ghattas B; Gascon P; Righini M; Matonti F; Venteclef N; Potier L; Gautier JF; Resseguier N; Bartoli A; Mourre F; Darmon P; Jacquier A; Dutour A Cardiovasc Diabetol; 2024 Sep; 23(1):328. PubMed ID: 39227844 [TBL] [Abstract][Full Text] [Related]
19. Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery. Wang T; Lei Y; Tian S; Jiang X; Zhou J; Liu T; Dresser S; Curran WJ; Shu HK; Yang X Med Phys; 2019 Jul; 46(7):3133-3141. PubMed ID: 31050804 [TBL] [Abstract][Full Text] [Related]
20. Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN. Lei Y; He X; Yao J; Wang T; Wang L; Li W; Curran WJ; Liu T; Xu D; Yang X Med Phys; 2021 Jan; 48(1):204-214. PubMed ID: 33128230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]