These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32182939)

  • 1. Flow Field Perception of a Moving Carrier Based on an Artificial Lateral Line System.
    Liu G; Hao H; Yang T; Liu S; Wang M; Incecik A; Li Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System.
    Liu G; Wang M; Wang A; Wang S; Yang T; Malekian R; Li Z
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29534499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-sensor fusion based attitude holding of a fin-actuated robotic fish.
    Zheng J; Zheng X; Zhang T; Xiong M; Xie G
    Bioinspir Biomim; 2020 May; 15(4):046003. PubMed ID: 32187586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial lateral line based relative state estimation between an upstream oscillating fin and a downstream robotic fish.
    Zheng X; Wang W; Li L; Xie G
    Bioinspir Biomim; 2020 Nov; 16(1):. PubMed ID: 32927443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on an Artificial Lateral Line System Based on a Bionic Hair Sensor with Resonant Readout.
    Yang B; Zhang T; Liang Z; Lu C
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial lateral line based local sensing between two adjacent robotic fish.
    Zheng X; Wang C; Fan R; Xie G
    Bioinspir Biomim; 2017 Nov; 13(1):016002. PubMed ID: 28949301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow field perception based on the fish lateral line system.
    Jiang Y; Ma Z; Zhang D
    Bioinspir Biomim; 2019 May; 14(4):041001. PubMed ID: 30995633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fish perspective: detecting flow features while moving using an artificial lateral line in steady and unsteady flow.
    Chambers LD; Akanyeti O; Venturelli R; Ježov J; Brown J; Kruusmaa M; Fiorini P; Megill WM
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line.
    Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M
    Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Sensor Placement of the Artificial Lateral Line for Flow Parametric Identification.
    Xu D; Zhang Y; Tian J; Fan H; Xie Y; Dai W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception.
    Hu X; Jiang Y; Ma Z; Xu Y; Zhang D
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.
    Abels C; Qualtieri A; De Vittorio M; Megill WM; Rizzi F
    Bioinspir Biomim; 2016 Jun; 11(3):035006. PubMed ID: 27257144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pressure difference sensor inspired by fish canal lateral line.
    Sharif MA; Tan X
    Bioinspir Biomim; 2019 Jul; 14(5):055003. PubMed ID: 31282390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish.
    Liu G; Wang A; Wang X; Liu P
    Appl Bionics Biomech; 2016; 2016():4732703. PubMed ID: 28115825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning model inspired by lateral line system for underwater object detection.
    Jeong T; Yoo J; Kim D
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34847542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Extended Kalman Filter and Back Propagation Neural Network Algorithm Positioning Method Based on Anti-lock Brake Sensor and Global Navigation Satellite System Information.
    Hu J; Wu Z; Qin X; Geng H; Gao Z
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30134633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distant touch hydrodynamic imaging with an artificial lateral line.
    Yang Y; Chen J; Engel J; Pandya S; Chen N; Tucker C; Coombs S; Jones DL; Liu C
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18891-5. PubMed ID: 17132735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional multi-source localization of underwater objects using convolutional neural networks for artificial lateral lines.
    Wolf BJ; van de Wolfshaar J; van Netten SM
    J R Soc Interface; 2020 Jan; 17(162):20190616. PubMed ID: 31964270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study on flow field characteristics of a self-propelled robot fish approaching static obstacles based on artificial lateral line.
    Xie O; Sun Z; Shen C
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37044102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.