These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32183009)

  • 81. Evolution of Precipitated Phases during Creep of G115/Sanicro25 Dissimilar Steel Welded Joints.
    Yang M; Zhang Z; Li L
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501106
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Study of biocompatibility of medical grade high nitrogen nickel-free austenitic stainless steel in vitro.
    Li M; Yin T; Wang Y; Du F; Zou X; Gregersen H; Wang G
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():641-8. PubMed ID: 25175259
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Microstructure, Tensile, and Fatigue Properties of Large-Scale Austenitic Lightweight Steel.
    Shin JH; Song JY; Kim SD; Park SJ; Ma YW; Lee JW
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556714
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Creep Damage Assessment of Ex-Service 12% Cr Power Plant Steel Using Digital Image Correlation and Quantitative Microstructural Evaluation.
    van Rooyen M; Becker T; Westraadt J; Marx G
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31554172
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The Effect of the Pre-Existing VC on the Evolution of Precipitate and Mechanical Properties in the H13 Steel.
    Shi K; Zhao F; Liu Y; Yin S; Yang R
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683271
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of Coiling Temperature on Microstructure, Properties and Resistance to Fish-Scaling of Hot Rolled Enamel Steel.
    Zhao Y; Huang X; Yu B; Yuan X; Liu X
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28858237
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Age Hardening Characteristics of an Ultra-Low Carbon Cu Bearing Steel.
    Sun M; Xu Y
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947794
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Multiple Interface Structures of M
    Ding Z; Liang B; Xu Z; Dong L
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19235-19242. PubMed ID: 32223209
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Influence of Nb Content on Precipitation, Grain Microstructure, Texture and Magnetic Properties of Grain-Oriented Silicon Steel.
    Wang Y; Zhu C; Li G; Liu Y; Liu Y
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33297538
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Influence of Sensitization on Mechanical Properties of AISI 304 Stainless Steel under High-Temperature.
    Jung KH; Kim SJ
    J Nanosci Nanotechnol; 2019 Jul; 19(7):4265-4269. PubMed ID: 30765003
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Investigation into Changes of Microstructure and Abrasive Wear Resistance Occurring in High Manganese Steel X120Mn12 during Isothermal Annealing and Re-Austenitisation Process.
    Dziubek M; Rutkowska-Gorczyca M; Dudziński W; Grygier D
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407952
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Study on Strengthening Mechanism of 9Cr-1.5Mo-1Co and 9Cr-3W-3Co Heat Resistant Steels.
    Zhao L; Chen X; Wu T; Zhai Q
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33003606
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides.
    Phaniraj MP; Shin YM; Jung WS; Kim MH; Choi IS
    Nano Converg; 2017; 4(1):16. PubMed ID: 28729961
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Strengthening of 0.18 wt % C Steel by Cold Differential Speed Rolling.
    Kang JH; Ko YG
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629742
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Analysis of γ' Precipitates, Carbides and Nano-Borides in Heat-Treated Ni-Based Superalloy Using SEM, STEM-EDX, and HRSTEM.
    Rakoczy Ł; Rutkowski B; Grudzień-Rakoczy M; Cygan R; Ratuszek W; Zielińska-Lipiec A
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33049926
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel.
    Xi T; Shahzad MB; Xu D; Sun Z; Zhao J; Yang C; Qi M; Yang K
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1079-1085. PubMed ID: 27987662
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Nanosized-Precipitate Behavior of Ferritic 11Cr Heat-Resistance Steel Subjected to High Temperature Creep Damage.
    Kim C
    J Nanosci Nanotechnol; 2019 Apr; 19(4):2421-2425. PubMed ID: 30487013
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Microstructure and Mechanical Properties of 4Al Alumina-Forming Austenitic Steel after Cold-Rolling Deformation and Annealing.
    Jiang C; Gao Q; Zhang H; Liu Z; Li H
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32570856
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bioactivity, Cytotoxicity, and Tribological Studies of Nickel-Free Austenitic Stainless Steel Obtained via Powder Metallurgy Route.
    Romanczuk-Ruszuk E; Krawczyńska A; Łukaszewicz A; Józwik J; Tofil A; Oksiuta Z
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138779
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Warm Pre-Strain: Strengthening the Metastable 304L Austenitic Stainless Steel without Compromising Its Hydrogen Embrittlement Resistance.
    Wang Y; Zhou Z; Wu W; Gong J
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29160830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.