These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32183016)

  • 1. A Peridynamics-Based Micromechanical Modeling Approach for Random Heterogeneous Structural Materials.
    Nayak S; Ravinder R; Krishnan NMA; Das S
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution.
    Wang W; Dai Y; Zhang C; Gao X; Zhao M
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics.
    Yaghoobi A; Chorzepa MG; Kim SS; A S
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peridynamic Simulation of Dynamic Fracture Process of Engineered Cementitious Composites (ECC) with Different Curing Ages.
    Hou W; Hu Y; Yuan C; Feng H; Cheng Z
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Failure Mechanisms in Ceramic Composites as Potential Railway Brake Disc Materials.
    Kim J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33203101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermomechanical Peridynamic Modeling for Ductile Fracture.
    Liu S; Han F; Deng X; Lin Y
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and Mechanical Characterization of Unprecedented Transparent Epoxy-Nanomica Composites-New Model Insights for Mechanical Properties.
    Ongaro G; Pontefisso A; Zeni E; Lanero F; Famengo A; Zorzi F; Zaccariotto M; Galvanetto U; Fiorentin P; Gobbo R; Bertani R; Sgarbossa P
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projective Peridynamics for Modeling Versatile Elastoplastic Materials.
    He X; Wang H; Wu E
    IEEE Trans Vis Comput Graph; 2018 Sep; 24(9):2589-2599. PubMed ID: 28952943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Characterization of MWCNT-Reinforced Cement Paste: Experimental and Multiscale Computational Investigation.
    Kavvadias IE; Tsongas K; Bantilas KE; Falara MG; Thomoglou AK; Gkountakou FI; Elenas A
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Peridynamics and Discrete Multiphysics to Study the Effects of Air Voids and Freeze-Thaw on the Mechanical Properties of Asphalt.
    Sanfilippo D; Ghiassi B; Alexiadis A; Hernandez AG
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33804905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A peridynamic approach to simulating fatigue crack propagation in composite materials.
    Ni T; Zaccariotto M; Galvanetto U
    Philos Trans A Math Phys Eng Sci; 2023 Jan; 381(2240):20210217. PubMed ID: 36403635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of Granular Fracture in Polycrystalline Materials Using Ordinary State-Based Peridynamics.
    Zhu N; De Meo D; Oterkus E
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on Nonlocal Theories in Fatigue Assessment of Solids.
    Moghtaderi SH; Jedi A; Ariffin AK
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Simulation of Failure Behavior of Reinforced Concrete Shear Walls by a Micropolar Peridynamic Model.
    Shen F; Chen Z; Zheng J; Zhang Q
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental characterisation for micromechanical modelling of CoCr stent fatigue.
    Sweeney CA; O'Brien B; McHugh PE; Leen SB
    Biomaterials; 2014 Jan; 35(1):36-48. PubMed ID: 24120042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling tumor growth with peridynamics.
    Lejeune E; Linder C
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1141-1157. PubMed ID: 28124191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale Progressive Failure Analysis of 3D Woven Composites.
    Ricks TM; Pineda EJ; Bednarcyk BA; McCorkle LS; Miller SG; Murthy PLN; Segal KN
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite Element-Based Numerical Simulations to Evaluate the Influence of Wollastonite Microfibers on the Dynamic Compressive Behavior of Cementitious Composites.
    Lyngdoh GA; Doner S; Nayak S; Das S
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eco-Friendly, High-Ductility Slag/Fly-Ash-Based Engineered Cementitious Composite (ECC) Reinforced with PE Fibers.
    Shumuye ED; Liu J; Li W; Wang Z
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and Computational Analysis of Bending Fatigue Failure in Chopped Carbon Fiber Chip Reinforced Composites.
    Tang H; Zhou G; Sun Q; Avinesh O; Meng Z; Engler-Pinto C; Su X
    Compos Struct; 2021 Nov; 275():. PubMed ID: 34764528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.