These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32183031)

  • 1. Medium Energy Carbon and Nitrogen Ion Beam Induced Modifications in Charge Transport, Structural and Optical Properties of Ni/Pd/n-GaN Schottky Barrier Diodes.
    Kumar S; Zhang X; Mariswamy VK; Reddy VR; Kandasami A; Nimmala A; Rao SVSN; Tang J; Ramakrishnna S; Sannathammegowda K
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32183031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
    Kumar A; Kashid R; Ghosh A; Kumar V; Singh R
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8213-23. PubMed ID: 26963627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation.
    Lee M; Vu TKO; Lee KS; Kim EK; Park S
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29865230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-State Carbon-Doped GaN Schottky Diodes by Controlling Dissociation of the Graphene Interlayer with a Sputtered AlN Capping Layer.
    Ke WC; Tesfay ST; Seong TY; Liang ZY; Chiang CY; Chen CY; Son W; Chang KJ; Lin JC
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48086-48094. PubMed ID: 31773955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Transport Mechanism in Palladium Schottky Contact on Si-Based Freestanding GaN.
    Lee M; Ahn CW; Vu TKO; Lee HU; Jeong Y; Hahm MG; Kim EK; Park S
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32050595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced current transport and injection in thin-film gallium-nitride light-emitting diodes by laser-based doping.
    Kim SJ; Kim KH; Chung HY; Shin HW; Lee BR; Jeong T; Park HJ; Kim TG
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16601-9. PubMed ID: 25215432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage to epitaxial GaN layer on Al
    Zhang LQ; Zhang CH; Li JJ; Meng YC; Yang YT; Song Y; Ding ZN; Yan TX
    Sci Rep; 2018 Mar; 8(1):4121. PubMed ID: 29515199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.
    Lee SY; Kim TH; Chol NK; Seong HK; Choi HJ; Ahn BG; Lee SK
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5042-6. PubMed ID: 19198387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current transport mechanism in a metal-GaN nanowire Schottky diode.
    Lee SY; Lee SK
    Nanotechnology; 2007 Dec; 18(49):495701. PubMed ID: 20442482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen ion induced 2D-GaN layer formation of GaAs (001) surface.
    Kumar P; Bhattacharya S; Govind ; Mehta BR; Shivaprasad SM
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5659-63. PubMed ID: 19928283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray detection with zinc-blende (cubic) GaN Schottky diodes.
    Gohil T; Whale J; Lioliou G; Novikov SV; Foxon CT; Kent AJ; Barnett AM
    Sci Rep; 2016 Jul; 6():29535. PubMed ID: 27403806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery Performance of Ge-Doped Vertical GaN Schottky Barrier Diodes.
    Gu H; Tian F; Zhang C; Xu K; Wang J; Chen Y; Deng X; Liu X
    Nanoscale Res Lett; 2019 Jan; 14(1):40. PubMed ID: 30706287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swift heavy ion induced structural and luminescence characterization of Y₂O₃:Eu³⁺ phosphor: a comparative study.
    Som S; Sharma SK; Lochab SP
    Luminescence; 2014 Aug; 29(5):480-91. PubMed ID: 24753140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extremely high frequency Schottky diodes based on single GaN nanowires.
    Shugurov KY; Mozharov AM; Fedorov VV; Blokhin SA; Neplokh VV; Mukhin IS
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36928235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of fluence dependent proton ion irradiation on the structural and optical properties of Bi
    Priyadarshini P; Das S; Alagarasan D; Ganesan R; Varadharajaperumal S; Sahoo S; Naik R
    RSC Adv; 2022 Feb; 12(8):5012-5026. PubMed ID: 35425520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swift heavy ion induced structural, iono and photoluminescence properties of β-CaSiO₃:Dy³⁺ nanophosphor.
    Sunitha DV; Nagabhushana H; Singh F; Dhananjaya N; Sharma SC; Nagabhushana BM; Shivakumara C; Chakradhar RP
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():300-5. PubMed ID: 22484267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical mechanism of field modulation effects in ion implanted edge termination of vertical GaN Schottky barrier diodes.
    Yin R; Li C; Zhang B; Wang J; Fu Y; Wen CP; Hao Y; Shen B; Wang M
    Fundam Res; 2022 Jul; 2(4):629-634. PubMed ID: 38934000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes.
    Kumar A; Heilmann M; Latzel M; Kapoor R; Sharma I; Göbelt M; Christiansen SH; Kumar V; Singh R
    Sci Rep; 2016 Jun; 6():27553. PubMed ID: 27282258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drastic evolution of point defects in vertically grown ZnO nanorods induced by lithium ion implantation.
    Das A; Basak D
    Phys Chem Chem Phys; 2022 Oct; 24(38):23858-23869. PubMed ID: 36165193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Voltage High-Energy α-Particle Detectors by GaN-on-GaN Schottky Diodes with Record-High Charge Collection Efficiency.
    Sandupatla A; Arulkumaran S; Ranjan K; Ng GI; Murmu PP; Kennedy J; Nitta S; Honda Y; Deki M; Amano H
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.